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Abstract

Vortex reconnections are considered to be an essential mechanism that sus-
tains the chaotic state of a vortex tangle in turbulent helium II. In a pure
turbulent superflow of helium II, superfluid helicity is a topologically invari-
ant quantity that counts the extent of linkage of closed vortex knots and loops.
This implies that superfluid helicity will not be conserved whenever vortex
reconnections take place. However, I find that, within the two-fluid model,
superfluid helicity is a conserved quantity even when the restoring and drag
forces (that arise due to the interaction of the superfluid vortices with the
normal fluid) are taken into account. I briefly discuss the implications of this
result.
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I. SUPERFLUID TURBULENCE AND HELICITY

Superfluid *He, conventionally referred to as helium II, behaves as an irrotational ideal
fluid which can contain quantized vortices. In addition, it supports a gas of elementary
excitations, viz. the normal fluid, which exerts a frictional force on the quantized vortices.
Such a hydrodynamical description of helium II, called the two-fluid model, is valid down
to scales comparable to the coherence length of the superfluid condensate, a distance which
both theory and experiment suggest to be of the order of a few Angstroms (see, for e.g.,
Refs. [1,2]).

Helium II exhibits turbulence as ordinary fluids do [3]. The turbulent superfluid is
considered to consist of a random tangle of quantized vortices. However, due to the fact
that circulation is quantized, unlike ordinary fluids, helium II exhibits turbulence only above
a certain critical velocity. Moreover, as helium II consists of two fluids, different types of
turbulent states are possible depending on the relative velocity between the normal and the
superfluid components (see Ref. [3]; also see Ref. [2], Chap. 7).

An important aspect of turbulence in helium II are vortex reconnections. It was recog-
nized very early in literature that topology-changing vortex reconnections are an essential
mechanism that sustains the chaotic state of the vortex tangle [4]. Despite that fact, there
still does not exist an adequate picture of vortex reconnections. (This is indeed the case at
least within the two-fluid model. However, it should be mentioned here that vortex recon-
nections have been shown to occur when the condensate wave function is assumed to evolve
according to the Gross-Pitaevskii equation [5].) The most successful approach that has been
developed to describe the homogeneous turbulence in helium II is the model due to Schwarz
(see Ref. [6] and the earlier references to Schwarz therein). Using his model, Schwarz has
been able to numerically simulate the steady-state density of quantized vortices that occur in
homogeneous turbulent states. However, even in the Schwarz’s model, vortex reconnection
was only proposed as an Ansatz.

In the case of turbulence in ordinary fluids, initially Moreau [7] and, independently later,
Moffatt [8,9] introduced helicity as a measure of the degree of tangledness of closed vortex
knots and loops. The helicity H corresponding to a velocity field v of the fluid is defined as:

H = /de v(x) - w(x)], (1)

where w = (V x v) is the vorticity field and V is the volume of the fluid containing the
vortex tangle. Helicity H as defined above is a pseudoscalar and is, in general, expected to
have a non-zero value in a turbulent flow. It has been pointed out earlier that helicity can
prove to be a useful measure to describe turbulence in non-linear fields or order parameters
such as the condensate wave function describing superfluid *He (see Refs. [10,11]; also see
Refs. [12,13] in this context). My aim in this Letter is to examine how the concept of helicity
can possibly be utilized in an attempt to understand the mechanism of vortex reconnections
in turbulent helium II.



II. SUPERFLUID HELICITY AS A LINKING NUMBER

Amongst the different possible turbulent states of helium II, the state I shall be interested
in is a pure turbulent superflow, a state wherein the normal fluid is at rest [14]. Interestingly
enough, unlike the other turbulent states of helium II, turbulence in a pure superflow is
independent of the geometry of the flow tube and, in fact, a homogeneous turbulent state
occurs in all geometries [15,16].

In a pure turbulent superflow, since the normal fluid is at rest, helicity for a given
volume V of helium II can be defined as

Hy = / P [va(x) - we(x)] (2)

where vy 1s the velocity of the superfluid component and wy is the vorticity associated with
the superflow. Given a vorticity field wg that is confined to a finite volume, the corresponding
superfluid velocity field v can be expressed using the Biot-Savart law as follows (see, for

instance, Refs. [17,18]):

Vy(x) = / P! [“’S(X') X (x = X')] . (3)

|x — x/|?

On substituting this expression for v in the definition (2) for the superfluid helicity, I obtain
that

o= [ [ o [ ) ) 0

|x — x'|?

In helium II, the vorticity field wg is confined to the superfluid vortices which are ex-
tremely thin with a core radius typically of the order of a few Angstroms (see, for e.g.,
Ref. [1], pp. 205-206; also see Ref. [19]). Even though the superfluid vortices are extremely
thin, the contribution to helicity due to the non-zero thickness of the vortices cannot be
ignored. Due to this reason, for the discussion that follows immediately, I shall consider
a superfluid vortex with a circulation k to be composed of infinitesimally thin vortex lines
with circulation £. (I will do so despite the fact that the circulation of the superfluid vortices
is quantized. I will revert to discussion in terms of the quantized circulation x soon after.)
Then, in the expression (4) for the superfluid helicity He, [ can write

/d3:1; we(x) = /ds/dz:z/l we(x) = Zi:’ii/dsiv (5)

where ds; and &; denote the infinitesimal element and the circulation associated with the
vortex line ¢ and the sum extends over all the vortex lines within a given vortex.

I shall now assume that the superfluid vortex tangle within the volume V contains only
closed vortex knots and loops. In such a case, the expression (4) for the superfluid helicity
can be formally written as

Hsf == (47‘[‘) Z (/j” /2;2' IZJ]‘) 5 (6)

]



where k; is the circulation associated with a given closed vortex [line {; and /jij denotes the
following Gauss integral along any two closed vortex lines ¢; and ¢; [20]:

6= ()11 e "

(It should be noted here that £;; is a topologically invariant quantity only when 7 # j and
it is not when ¢ = j. I shall comment further on this point in the next paragraph.) The sum
in the expression (6) extends over all the closed vortex lines and care should be exercised in
rewriting this sum as a sum over the tubular vortex knots and loops. Due to the fact that
the superfluid vortices have a non-zero thickness, in addition to the contribution to helicity

when ¢; and /; are considered to be vortex lines in two different vortex tubes (say, a and
b), one need to take into account the contribution when ¢; and /; are considered to be two
different lines within the same vortex tube (say, a). The former would then correspond to
the topologically invariant Gauss linking number L,; of the two different vortices a and b
and the latter would correspond to the linking number of the two different vortex lines in
the same vortex a, a quantity that I shall refer to as the self-linking number S!, of the
vortex, which is topologically invariant as well (cf. Refs. [21,22]; see Ref. [23] for a recent
discussion). Therefore, the superfluid helicity Hy can be written as

aZb

Hee = (47) Z (Lap Ka k) + (47) Z (Sla /433) , (8)

a,b a

where the sum in the second term extends over all the vortices, whereas the sum in the first
term extends over all pairs of vortices confined to the volume V.

The following comments and clarifications are in order at this stage of the discussion. |
would like to stress again that the self-linking number S/, of a vortex a is the Gauss linking
number of two different vortex lines (say, {; and ¢; with ¢ # j) within the same vortex.
Now, using Calugareanu’s theorem!, the self-linking number S, of a particular vortex a can
be decomposed as follows:

Sl, = Wry + Tw,, (9)

where Wr, is a quantity referred to as the writhe and Tw is called the twist of the vortex.
The twist Tw, reflects the extent to which a given vortex line (say, £;) “twists” around
another line (say, ¢;) within the same vortex a and the quantity writhe Wr, corresponds to
the case wherein i = j in L£;; (i.e. when /; = {; within the same vortex a). (For an exact
definition of the twist, see, for instance, Ref. [23].) Had I considered the superfluid vortices
to be infinitesimally thin and had, therefore, treated the sum over the vortex lines in Eq. (6)

IThis theorem is usually referred to in literature as the White-Fuller relation [24,25]. However, as
Moffatt and Ricca point out [23], Calugareanu had, in fact, obtained this relation almost a decade
before White and Fuller. Following Moffatt and Ricca, I shall refer to this relation as Calugareanu’s
theorem.



as the sum over the superfluid vortices themselves, I would have taken into account the
contribution to superfluid helicity due to the writhe Wr,, but would have missed out the
contribution due to the twist Tw,. (A twisted vortex, for instance, will have a higher energy
than one that is not and, hence, it should be, in principle, possible to distinguish between
these two vortices; see, for e.g., Ref. [26] in this context.) Moreover, as I have pointed out
above, the writhe Wr,, when it stands alone, is not a topologically invariant quantity. It
is only its sum with the twist Tw,, viz. the self-linking number S/,, that is topologically
invariant (cf. Ref. [23]). Therefore, had I ignored the non-zero thickness of the superfluid
vortices, I would have obtained an expression for the superfluid helicity that would not be
topologically invariant.

The circulation & is related to the winding number n of the superfluid vortex by the
relation (cf. Ref. [1], p. 182): & = (27nki/m), where m is the mass of the *He atom. Superfluid
vortices with winding number n > 1 are known to be unstable (see, for instance, Ref. [17])
and, hence, one can expect that the turbulent superfluid predominantly contains vortices
with unit winding number. Then, the helicity of the superfluid vortex tangle as given by
Eq. (8) reduces to

Hee = (47) (27Th/m)2 (GZ# Lo+ ZSla) ) (10)

Evidently, in a pure turbulent superflow of helium II, superfluid helicity Hy¢ is a topologically
invariant quantity that counts the extent of linkage of closed superfluid vortex knots and
loops.

I1I. CONSERVATION OF SUPERFLUID HELICITY

In the two-fluid model, when the vorticity associated with the superflow is non-zero,
the superfluid velocity vy satisfies the following equation of motion (cf. Ref. [27]; also see

Refs. [28,29]):

(DSVS

) = (<Yt T+ Fa), (11)

where u is a scalar function that denotes the chemical potential, F, is a restoring force that
tends to straighten curved vortices and F g is the mutual frictional force that arises due to
the interaction of the normal fluid with the superfluid vortices. The differential operator
(Ds/Dt) appearing in the above equation of motion is defined as

Ds 0

D = a—l—(VS-V). (12)

In the case of turbulence in a pure superflow, since the normal fluid is at rest, the gradient
of the chemical potential u is given by

V= (%) Vp— SVT - (g_p) v ([vl?) + (%) V (Jwil) s (13)



where p = (ps + pn), pn and ps are the normal and the superfluid densities, p denotes
the pressure, S the entropy per unit mass, T' the temperature and the quantity A is a
phenomenological function which relates the increase in the energy density that results from
an increase in the number of superfluid vortices. Also, it has been assumed that, as in the
case of ordinary fluids, the superfluid vorticity wy is defined as

ws = (V X vy). (14)
The restoring force F, is given by the expression
F, = —(ws X F), (15)

where

Ps

. (i) (V < (ms)) and @ = (waf]wi]). (16)

The mutual frictional force Fg is given by the expression

e (2] s (£2) - o)

— () (@ |- v+ D] ). (17)

where B and B’ are the Hall and Vinen coffecients. The last term involving the coefficient v
represents a longitudinal mutual frictional force which is very small compared to B and B’
and hence can be neglected.

I had pointed out in the last section that the superfluid vortices are extremely thin
and, hence, the vorticity field wy is confined to these thin vortices. By assuming that the
superfluid vorticity is given by the expression (14), the vorticity associated with these thin
vortices has in effect been smoothed over a finite extent. The equation of motion for the
vorticity field wg can now be obtained from the equation of motion (11) for the superfluid
velocity field. It is given by

D.wq
(F52) = [(ws V)ve = (Vv + 7 x (Fe+ F). (18)
Since the normal fluid is at rest in a pure turbulent superflow, I can (to a good approxima-
tion) assume that its density is a constant. Then, the equation of continuity of mass reduces
to

(a;;) LV (pevs) = 0. (19)

If I now assume that the volume V containing the superfluid vortex tangle is moving with
the superflow, then

Dy

o (s d*x) = 0. (20)



From the equation of motion (18) for the vorticity field wy and the continuity equation (19),
I obtain that

() (e

Ps
Using this equation and Eqgs. (11) and (20), it is then easy to show that

(P = / Co (V- [ 2) = ] w.)
_ / o (V-[vs x (Fr—|—Fns)])—|—2 [ [ws-(Fr—l—Fns) . (22)

Since the restoring force F, and the mutual frictional force F,4 are perpendicular to the
vorticity field wy (see Eqgs. (15) and (17) above), the last term in the above expression
vanishes. The remaining two terms can be rewritten using Gauss’ divergence theorem as

(D Hsf) / P (- Ha), (23)

where S is the surface enclosing the volume V and 7 is the unit-vector normal to the
surface §. The quantity Hgs is the current associated with the superfluid helicity and is
given by the expression

follows

Hy = ([(|vs|2/2) — ] wo —[ve % (F + Fns)]). (24)

Evidently, the superfluid helicity Hy is a conserved quantity [10].

In the last section, I had shown that the superfluid helicity Hy measures the extent
of linkage of closed vortex knots and loops in a vortex tangle. The fact that superfluid
helicity is conserved clearly implies that vortex reconnections are precluded within the two-
fluid model even when the restoring and drag forces are taken into account. It should be
mentioned here that, in turbulent states wherein the normal fluid is in motion, the total
helicity of helium II will contain a cross term involving the normal fluid velocity v, and the
superfluid vorticity ws. Hence, when the normal fluid is in motion, the helicity for a given
volume of helium IT will not reflect the extent of linkage of closed vortex knots and loops
within that volume. It is for this reason that I had confined my discussion to turbulence in
a pure superflow.

IV. DISCUSSION

In a classical ideal fluid, Helmholtz’s theorem ensures that the vortex lines move with
the fluid and hence no vortex reconnections occur. But, in turbulent helium II, due to the
presence of the restoring and drag forces F, and Fq, the superfluid vortices, in general,
do not move with the superflow (see Ref. [28], Eq. (16-45) in this context). However, as |
have shown, helicity is conserved even when these forces are taken into account. Clearly,



the fact that the vortices cease to move with the flow does not necessarily imply that vortex
reconnections will take place—the forces F, and F,4 stretch and drag and the superfluid
vortex knots and loops in such a fashion that vortex reconnections do not occur.

However, it is important to realize that the fact that helicity is conserved within the two-
fluid model does not imply vortex reconnections will not take place in reality. (As I have
mentioned before, vortex reconnections are considered to be essential to sustain the chaotic
state of the vortex tangle Ref.schwarz88.) In fact, the equations of the two-fluid model, at
least as they presently stand, can be expected to breakdown when the vortices approach
each other. In classical fluids, it is known that when viscous forces are present, vortices can
move towards each other and eventually reconnect [30,31]. This suggests that additional
forces, possibly viscous in nature, may need to be introduced, if vortex reconnections are to
be accounted for within the two-fluid model [10].

In spite of such “improvements” that can possibly be made to the two-fluid model, the
quantum nature of the vortices cannot be ignored when the vortices approach within a few
core lengths of each other [32]. When considering the fact that the superfluid helicity of a
vortex tangle containing closed vortex knots and loops is proportional to an integer, it is
tempting to propose the following quantum picture of vortex reconnections. The superfluid
helicity (or, equivalently, the total linking number) of a vortex tangle can be considered
as a quantum number describing the stationary and turbulent states of the condensate
wave function of *He. In such a picture, vortex reconnections can be interpreted as a
quantum transition between the stationary states of the condensate wave function described
by different helicity quantum numbers.
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