Lecture 1: Linear Vector Space

Ashwin Joy

Department of Physics, IIT Madras, Chennai - 600036

Vectors

Important objects having both magnitude and direction

Eg., momentum $\vec{p}=m\vec{v}$, force $\vec{f}=rac{\mathrm{d}ec{p}}{\mathrm{d}t}$

- To generalize to include vectors with complex components Dirac notation, $\vec{a} \equiv |a\rangle$ is most convenient
- ullet The set of kets $\{\ket{a},\ket{b},\ket{c}\ldots\}$ $\stackrel{\mathsf{denoted\ as}}{\longrightarrow}\mathcal{K}$ (ket space)

$\mathsf{Ket}\;\mathsf{Space}\;\mathcal{K}$

It is a linear vector space of $\{|a\rangle, |b\rangle, |c\rangle \dots \}$ that is closed under

Addition

$$|a\rangle + |b\rangle = |c\rangle = |b\rangle + |a\rangle$$

 $(|a\rangle + |b\rangle) + |c\rangle = |a\rangle + (|b\rangle + |c\rangle)$

Multiplication

$$\lambda(|a\rangle + |b\rangle) = \lambda |a\rangle + \lambda |b\rangle$$

 $(\lambda + \mu) |a\rangle = \lambda |a\rangle + \mu |a\rangle$
 $\lambda(\mu |a\rangle) = (\lambda \mu) |a\rangle$

Linear Independence

ullet The set $\mathbb{B}=\left\{\ket{e_1},\ket{e_2},\ldots\ket{e_N}
ight\}$ is linearly independent, if

$$\sum_{i} \lambda_{i} \ket{e_{i}} = 0$$
, with $\lambda_{i} = 0$

- \bullet K is N-dimensional, if no more than N such kets exist
- ullet An arbitrary ket in ${\mathcal K}$ is specified using ${\mathbb B}$,

$$\ket{a} = \sum_{i} a_{i} \ket{e_{i}}, \quad a_{i} \in \mathbb{C}$$

ullet B is thus called a **basis** and $|e_i\rangle$ are called **base kets**

Bra Space \mathcal{B}

- ullet It is **dual** to the ${\mathcal K}$ space
- ullet Typical bras in ${\cal B}$ are denoted as $\left\langle a\right|,\left\langle b\right|,\left\langle c\right|\dots$
- ullet ${\cal B}$ is therefore spanned by some basis $\{ra{e_1},ra{e_2},\dotsra{e_N}\}$

Dual Correspondence (DC)

$$\begin{array}{ccc} |a\rangle & \stackrel{\mathsf{DC}}{\longleftrightarrow} & \langle a| \\ \{|e_1\rangle\,, |e_2\rangle\,, \dots |e_N\rangle\} & \stackrel{\mathsf{DC}}{\longleftrightarrow} & \{\langle e_1|\,, \langle e_2|\,, \dots \langle e_N|\} \\ & |a\rangle + |b\rangle & \stackrel{\mathsf{DC}}{\longleftrightarrow} & \langle a| + \langle b| \\ & c_a\,|a\rangle + c_b\,|b\rangle & \stackrel{\mathsf{DC}}{\longleftrightarrow} & c_a^*\,\langle a| + c_b^*\,\langle b| \end{array}$$

Vector Products

Two useful products exist,

- Inner product: $(\langle a|) \cdot (|b\rangle) = \langle a|b\rangle$ "scalar"
- Outer product: $(|a\rangle) \cdot (\langle b|) = |a\rangle \langle b|$ "operator"
- Illegal product: $(|a\rangle) \cdot (|b\rangle) = |a\rangle |b\rangle$ "meaningless"

Postulates for Inner Product

$$\langle a|b \rangle = \langle b|a \rangle^*$$
 "non-commutative" $\langle a|a \rangle \geq 0$ "norm is positive-definite"

Non null kets can be always normalized by

$$\frac{\ket{a}}{\ket{a\ket{a}}^{1/2}} \longrightarrow \ket{a}_{\text{normalized}}$$

Illustration of Vector Products

Consider a standard (ortho-normal) basis,

$$\mathbb{B} = \{|e_1\rangle, |e_2\rangle, \dots |e_N\rangle\}, \quad \langle e_i|e_j\rangle = \delta_{ij}$$

A random ket in \mathbb{B} can be written as,

$$\ket{a} = \sum_{i} a_{i} \ket{e_{i}}, \quad a_{i} \in \mathbb{C}$$

The inner product is a scalar

$$\langle a|a\rangle = \left(\underbrace{\sum_{i} a_{i}^{*} \langle e_{i}|}_{\langle a|}\right) \left(\underbrace{\sum_{j} a_{j} |e_{j}\rangle}_{|a\rangle}\right) = \sum_{i} |a_{i}|^{2} \geq 0.$$

The outer product is a projection operator

$$\underbrace{\ket{e_j}ra{e_j}}_{\text{operator}}\underbrace{\ket{a}}_{\text{ket}} = \ket{e_j}ra{e_j}\sum_{i}a_i\ket{e_i} = a_j\ket{e_j}$$

Homework

Prove the following

ullet Pythagoras theorem: If $|a\rangle$ and $|b\rangle$ are orthogonal, then

$$||a\rangle + |b\rangle|^2 = \langle a|a\rangle + \langle b|b\rangle$$

• Parallelogram law: For arbitrary $|a\rangle$ and $|b\rangle$,

$$||a\rangle + |b\rangle|^2 + ||a\rangle - |b\rangle|^2 = 2(\langle a|a\rangle + \langle b|b\rangle)$$

