Lecture 10: Beyond Normal Operators

Ashwin Joy

Department of Physics, IIT Madras, Chennai - 600036

Diagonalization

- Normal operators $\left(\boldsymbol{A A}^{\dagger}=\boldsymbol{A}^{\dagger} \boldsymbol{A}\right)$ are unitarily diagonalizable
- What can we say about other operators?

Theorem

An operator \boldsymbol{A} is diagonalizable if there exists an \boldsymbol{S}, such that

$$
\boldsymbol{S}^{-1} \boldsymbol{A} \boldsymbol{S}=\boldsymbol{A}_{\mathrm{D}}=\left[\begin{array}{ccc}
\lambda_{1} & 0 & \ldots \\
0 & \lambda_{2} & \ldots \\
\vdots & \vdots & \ddots
\end{array}\right]
$$

where the similarity operator \boldsymbol{S} is set up using the eigenkets of \boldsymbol{A}

In what follows, we prove this!

Basis Transformation

Consider \boldsymbol{A} in the standard basis, $\mathbb{B}=\left\{\left|e_{1}\right\rangle,\left|e_{2}\right\rangle, \ldots\left|e_{N}\right\rangle\right\}$ If there exists an eigenbasis of $\boldsymbol{A}, \mathbb{V}=\left\{\left|v_{2}\right\rangle,\left|v_{2}\right\rangle, \ldots\left|v_{N}\right\rangle\right\}$
We can construct the transformation operator \boldsymbol{S},

$$
\begin{aligned}
\left|v_{j}\right\rangle & =\sum_{k} \boldsymbol{S}_{k j}\left|e_{k}\right\rangle \quad \text { with }\left|e_{k}\right\rangle=\sum_{l} \boldsymbol{S}_{l k}^{-1}\left|v_{l}\right\rangle \\
\text { or, }\left\langle e_{l} \mid v_{j}\right\rangle & =\boldsymbol{S}_{l j} \ldots \mathbb{B} \text { is orthonormal }
\end{aligned}
$$

Therefore,

$$
\boldsymbol{S}=\left[\begin{array}{ccc}
\left\langle e_{1} \mid v_{1}\right\rangle & \left\langle e_{1} \mid v_{2}\right\rangle & \ldots \\
\left\langle e_{2} \mid v_{1}\right\rangle & \left\langle e_{2} \mid v_{2}\right\rangle & \ldots \\
\vdots & \vdots & \ddots
\end{array}\right]=\underbrace{\left[\begin{array}{ccc}
\vdots & \vdots & \\
\left|v_{1}\right\rangle & \left|v_{2}\right\rangle & \ldots \\
\vdots & \vdots &
\end{array}\right]}_{\text {eigenkets as columns }}
$$

Proof by Geometry

$$
\begin{aligned}
& \boldsymbol{A} \boldsymbol{S}=\left[\begin{array}{ccc}
\boldsymbol{A}_{11} & \boldsymbol{A}_{12} & \ldots \\
\boldsymbol{A}_{21} & \boldsymbol{A}_{22} & \cdots \\
\vdots & \vdots & \ddots
\end{array}\right]\left[\begin{array}{ccc}
\vdots & \vdots & \\
\left|\boldsymbol{v}_{1}\right\rangle & \left|v_{2}\right\rangle & \ldots \\
\vdots & \vdots &
\end{array}\right] \\
& =\left[\begin{array}{ccc}
\vdots & \vdots & \\
\lambda_{1}\left|v_{1}\right\rangle & \lambda_{2}\left|v_{2}\right\rangle & \ldots \\
\vdots & \vdots &
\end{array}\right] \\
& =\underbrace{\left[\begin{array}{ccc}
\vdots & \vdots & \\
\left|v_{1}\right\rangle & \left|v_{2}\right\rangle & \ldots \\
\vdots & \vdots &
\end{array}\right]}_{\boldsymbol{S}} \underbrace{\left[\begin{array}{ccc}
\lambda_{1} & 0 & \ldots \\
0 & \lambda_{2} & \ldots \\
\vdots & \vdots & \ddots
\end{array}\right]}_{\boldsymbol{A}_{\mathrm{D}}}
\end{aligned}
$$

Therefore,

$$
S^{-1} A S=A_{D}
$$

Proof by Dirac Formalism

$$
\begin{aligned}
(\boldsymbol{A} \boldsymbol{S})_{i j} & =\sum_{l} \boldsymbol{A}_{i l} \boldsymbol{S}_{l j} \\
& =\sum_{l}\left\langle e_{i}\right| \boldsymbol{A}\left|e_{I}\right\rangle\left\langle e_{I} \mid v_{j}\right\rangle \\
& =\left\langle e_{i}\right| \boldsymbol{A}\left|v_{j}\right\rangle \quad \ldots \text { closure of } \mathbb{B} \\
& =\left\langle e_{i} \mid v_{j}\right\rangle \lambda_{j} \quad \ldots \boldsymbol{A}\left|v_{j}\right\rangle=\lambda_{j}\left|v_{j}\right\rangle \\
& =\boldsymbol{S}_{i j} \lambda_{j} \\
& =\sum_{k} \boldsymbol{S}_{i k} \delta_{k j} \lambda_{k} \\
& =\sum_{k} \boldsymbol{S}_{i k} \boldsymbol{A}_{\mathrm{D} k j} \\
& =\left(\boldsymbol{S} \boldsymbol{A}_{\mathrm{D}}\right)_{i j}
\end{aligned}
$$

yielding,

$$
A S=S A_{\mathrm{D}} \Longrightarrow \boldsymbol{S}^{-1} \boldsymbol{A S}=\boldsymbol{A}_{\mathrm{D}}
$$

Simultaneous Diagonalization

For some \boldsymbol{A} and \boldsymbol{B}, there exists a similarity operator \boldsymbol{S}, such that

$$
\begin{gathered}
\boldsymbol{S}^{-1} \boldsymbol{A} \boldsymbol{S}=\boldsymbol{A}_{\mathrm{D}} \quad \text { and } \quad \boldsymbol{S}^{-1} \boldsymbol{B S}=\boldsymbol{B}_{\mathrm{D}} \\
\text { if and only if, }[\boldsymbol{A}, \boldsymbol{B}]=0
\end{gathered}
$$

Proof
Left as exercise, as it is similar to the case of Hermitian operators

Problem

Q. Consider the following operator in the standard basis

$$
\boldsymbol{A}=\left[\begin{array}{cc}
1 & 1 \\
0 & 0.5
\end{array}\right]
$$

Compute the following

1. $\operatorname{Tr}\left(e^{\boldsymbol{A}}\right)$
2. $\operatorname{det}\left(e^{\boldsymbol{A}}\right)$
3. \boldsymbol{A}^{∞}

Solution

From the characeteristic equation of \boldsymbol{A},

$$
0=\operatorname{det}(\boldsymbol{A}-a \boldsymbol{I})=(1-a)(0.5-a)
$$

we get the eigenvalues, $a=1,0.5$

Eigenkets

$$
\left[\begin{array}{l}
0 \\
0
\end{array}\right]=\underbrace{\left[\begin{array}{cc}
0 & 1 \\
0 & -0.5
\end{array}\right]}_{\boldsymbol{A}-\boldsymbol{I}} \underbrace{\left[\begin{array}{l}
x \\
y
\end{array}\right]}_{|v\rangle}=\left[\begin{array}{c}
y \\
-0.5 y
\end{array}\right], \quad \text { yielding } x=\text { arbitrary, } y=0
$$

We pick a normalized ket, $\left|v_{1}\right\rangle=\left[\begin{array}{ll}1 & 0\end{array}\right]^{\top}$

$$
a=0.5
$$

$$
\left[\begin{array}{l}
0 \\
0
\end{array}\right]=\underbrace{\left[\begin{array}{cc}
0.5 & 1 \\
0 & 0
\end{array}\right]}_{A-0.5 I} \underbrace{\left[\begin{array}{l}
x \\
y
\end{array}\right]}_{|v\rangle}=\left[\begin{array}{c}
0.5 x+y \\
0
\end{array}\right], \quad \text { yielding } x=-2 y
$$

We pick a normalized ket, $\left|v_{2}\right\rangle=\left[\begin{array}{ll}-2 / \sqrt{5} & 1 / \sqrt{5}\end{array}\right]^{\top}$

Diagonalize \boldsymbol{A}

Since $\left|v_{1}\right\rangle$ and $\left|v_{2}\right\rangle$ are linearly independent, we have

$$
\boldsymbol{S}^{-1} \boldsymbol{A} \boldsymbol{S}=\boldsymbol{A}_{\mathrm{D}}=\left[\begin{array}{cc}
1 & 0 \\
0 & 0.5
\end{array}\right]
$$

where

$$
\boldsymbol{S}=\left[\begin{array}{cc}
1 & -2 / \sqrt{5} \\
0 & 1 / \sqrt{5}
\end{array}\right] \text { yielding, } \boldsymbol{S}^{-1}=\left[\begin{array}{cc}
1 & 2 \\
0 & \sqrt{5}
\end{array}\right]
$$

Exponentiation to an arbitrary integer $(n>0)$ is super easy!

$$
\boldsymbol{A}^{n}=\left(\boldsymbol{S} \boldsymbol{A}_{\mathrm{D}} \boldsymbol{S}^{-1}\right)^{n}=\boldsymbol{S} \boldsymbol{A}_{\mathrm{D}}^{n} \boldsymbol{S}^{-1}=\boldsymbol{S}\left[\begin{array}{cc}
1 & 0 \\
0 & 0.5^{n}
\end{array}\right] \boldsymbol{S}^{-1}
$$

Therefore,

$$
\lim _{n \rightarrow \infty} \boldsymbol{A}^{n}=\boldsymbol{S}\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right] \boldsymbol{S}^{-1}=\left[\begin{array}{ll}
1 & 2 \\
0 & 0
\end{array}\right]
$$

Functions \boldsymbol{A}

For a function of \boldsymbol{A}, say

$$
e^{\boldsymbol{A}}=e^{\boldsymbol{S} \boldsymbol{A}_{\mathrm{D}} \boldsymbol{S}^{-1}}=\boldsymbol{S} e^{\boldsymbol{A}_{\mathrm{D}}} \boldsymbol{S}^{-1}=\boldsymbol{S}\left[\begin{array}{cc}
e & 0 \\
0 & \sqrt{e}
\end{array}\right] \boldsymbol{S}^{-1}
$$

By the cyclicity of trace,

$$
\operatorname{Tr}\left(e^{\boldsymbol{A}}\right)=e+\sqrt{e}
$$

By the distributivity of determinant,

$$
\operatorname{det}\left(e^{\boldsymbol{A}}\right)=e^{3 / 2}
$$

