Lecture 4: Worked Examples

Ashwin Joy

Department of Physics, IIT Madras, Chennai - 600036

Problem 1

Show that the composition of two unitary transformations \boldsymbol{U} and \boldsymbol{V}, is also unitary.

$$
\text { i.e, }(\boldsymbol{U V})^{\dagger}=(\boldsymbol{U V})^{-1}
$$

Solution: We start with,

$$
\begin{aligned}
(\boldsymbol{U V})^{\dagger} & =\boldsymbol{V}^{\dagger} \boldsymbol{U}^{\dagger} \ldots \text { shown earlier } \\
& =\boldsymbol{V}^{-1} \boldsymbol{U}^{-1}, \quad \ldots \boldsymbol{U} \text { and } \boldsymbol{V} \text { are unitary } \\
& =(\boldsymbol{U V})^{-1}
\end{aligned}
$$

Therefore, UV is also unitary!

Problem 2

Consider an operator $\boldsymbol{A}=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$ in some basis $\mathbb{B}=\{\underbrace{\left[\begin{array}{l}1 \\ 0\end{array}\right]}_{\left|e_{1}\right\rangle}, \underbrace{\left[\begin{array}{l}0 \\ 1\end{array}\right]}_{\left|e_{2}\right\rangle}\}$
Give representation of \boldsymbol{A} in some $\mathbb{B}^{\prime}=\{\underbrace{\frac{1}{\sqrt{2}}\left[\begin{array}{c}1 \\ -1\end{array}\right]}_{\left|e_{1}^{\prime}\right\rangle}, \underbrace{\frac{1}{\sqrt{2}}\left[\begin{array}{l}1 \\ 1\end{array}\right]}_{\left|e_{2}^{\prime}\right\rangle}\}$.
Solution: To get $\boldsymbol{A}^{\prime}=\boldsymbol{U}^{\dagger} \boldsymbol{A} \boldsymbol{U}$
we require $\boldsymbol{U}=\left[\begin{array}{ll}\left\langle e_{1} \mid e_{1}^{\prime}\right\rangle & \left\langle e_{1} \mid e_{2}^{\prime}\right\rangle \\ \left\langle e_{2} \mid e_{1}^{\prime}\right\rangle & \left\langle e_{2} \mid e_{2}^{\prime}\right\rangle\end{array}\right]=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}1 & 1 \\ -1 & 1\end{array}\right]$

$$
\text { and } \boldsymbol{U}^{\dagger}=\left[\begin{array}{ll}
\left\langle e_{1}^{\prime} \mid e_{1}\right\rangle & \left\langle e_{1}^{\prime} \mid e_{2}\right\rangle \\
\left\langle e_{2}^{\prime} \mid e_{1}\right\rangle & \left\langle e_{2}^{\prime} \mid e_{2}\right\rangle
\end{array}\right]=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right]
$$

yielding, $\boldsymbol{A}^{\prime}=\frac{1}{2}\left[\begin{array}{cc}1 & -1 \\ 1 & 1\end{array}\right]\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]\left[\begin{array}{cc}1 & 1 \\ -1 & 1\end{array}\right]=\left[\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right]$

Problem 3

If \boldsymbol{A} is unitary, show that
a. \boldsymbol{A}^{-1} is unitary
b. \boldsymbol{A}^{T} is unitary

Solution:

To prove \boldsymbol{A}^{-1} is unitary, we start with

$$
\begin{aligned}
\boldsymbol{A}^{-1}\left(\boldsymbol{A}^{-1}\right)^{\dagger} & =\boldsymbol{A}^{\dagger}\left(\boldsymbol{A}^{\dagger}\right)^{\dagger} \quad \ldots \boldsymbol{A} \text { is unitary } \\
& =\left(\boldsymbol{A}^{\dagger} \boldsymbol{A}\right)^{\dagger} \\
& =\boldsymbol{I}
\end{aligned}
$$

To prove A^{T} is also unitary, we write

$$
\begin{aligned}
\boldsymbol{A}^{T}\left(\boldsymbol{A}^{T}\right)^{\dagger} & =\boldsymbol{A}^{T}\left(\boldsymbol{A}^{\dagger}\right)^{T} \\
& =\left(\boldsymbol{A}^{\dagger} \boldsymbol{A}\right)^{T} \\
& =\mathbf{I}
\end{aligned}
$$

Problem 4

Consider a basis $\mathbb{B}=\left\{\left|e_{1}\right\rangle,\left|e_{2}\right\rangle, \ldots\right\}$. Show that the matrix elements of an operator \boldsymbol{A} are

$$
\boldsymbol{A}_{i j}=\left\langle e_{i}\right| \boldsymbol{A}\left|e_{j}\right\rangle
$$

Solution: Let's consider an operation

$$
\begin{aligned}
|a\rangle & =\boldsymbol{A}|b\rangle \\
{\left[\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots
\end{array}\right] } & =\left[\begin{array}{ccc}
\boldsymbol{A}_{11} & \boldsymbol{A}_{12} & \ldots \\
\boldsymbol{A}_{21} & \boldsymbol{A}_{22} & \ldots \\
\vdots & \vdots & \ddots
\end{array}\right]\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots
\end{array}\right] \\
\text { yielding } a_{i} & =\sum_{j} \boldsymbol{A}_{i j} b_{j}
\end{aligned}
$$

But we note from above operation,

$$
a_{i}=\left\langle e_{i} \mid a\right\rangle=\left\langle e_{i}\right| \boldsymbol{A}|b\rangle=\sum_{j}\left\langle e_{i}\right| \boldsymbol{A}\left|e_{j}\right\rangle b_{j}
$$

Comparing these two, we get $\boldsymbol{A}_{i j}=\left\langle e_{i}\right| \boldsymbol{A}\left|e_{j}\right\rangle$

Problem 5

Prove that $\boldsymbol{A}^{\dagger}=\left(\boldsymbol{A}^{*}\right)^{T}$

Solution

The matrix elements of \boldsymbol{A} in some basis $\mathbb{B}=\left\{\left|e_{1}\right\rangle,\left|e_{2}\right\rangle \ldots\right\}$ are

$$
\boldsymbol{A}_{i j}=\boldsymbol{A}_{j i}^{T}=\left\langle e_{i}\right| \boldsymbol{A}\left|e_{j}\right\rangle=\left\langle e_{j}\right| \boldsymbol{A}^{\dagger}\left|e_{i}\right\rangle^{*}=\left(\boldsymbol{A}_{j i}^{\dagger}\right)^{*}
$$

Conjugating both sides,

$$
\left(\boldsymbol{A}_{j i}^{T *}\right)=\boldsymbol{A}_{j i}^{\dagger}
$$

Implying that

$$
\boldsymbol{A}^{T *}=\boldsymbol{A}^{\dagger}
$$

