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Generalizing to Arbitrary Bases

Consider
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with an arbitrary ket
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How do the components of |a) transform?
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To answer this, we must find the similarity transformation!



Transformation of Base Kets

Since both bases are complete
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Proof is very easy!

Let's take |vj) = Z Py |v) ... assuming P # S!
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only valid if, PS = I ... base kets are linearly independent

yieldingg, P = S§7! ... contradicts our asumption



Transformation of an Arbitrary Ket

An arbitrary ket
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yielding a transformation rule,
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Transformation of Operators

Imagine the operation

|a) = X |b)
Matrix representation in B
al X11 X12 . b1
a | — X21 X22 b2
known
Matrix representation in B/
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Operator Elements in New Basis

Lets recall the operation in B/
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Applying S (from left) to the last two,
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giving us,
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Application in a Problem

Consider two bases
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Some linear operator X has the following representation in B
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What is the representation of X in B'?
To answer this, we need to construct S first!
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Recalling that
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yielding, S



Transformation of Operator X

Armed with § and S™1, we compute
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This is the matrix representation of X in B’



