Lecture 5: Basis Transformations - II

Ashwin Joy
Department of Physics, IIT Madras, Chennai - 600036

Generalizing to Arbitrary Bases

Consider
$\mathbb{B}=\left\{\left|v_{1}\right\rangle,\left|v_{2}\right\rangle, \ldots\left|v_{N}\right\rangle\right\} \xrightarrow{\text { transformed to }} \mathbb{B}^{\prime}=\left\{\left|v_{1}^{\prime}\right\rangle,\left|v_{2}^{\prime}\right\rangle, \ldots\left|v_{N}^{\prime}\right\rangle\right\}$ with an arbitrary ket

$$
|a\rangle=\underbrace{\sum_{i} a_{i}\left|v_{i}\right\rangle}_{\mathbb{B}}=\underbrace{\sum_{j} a_{j}^{\prime}\left|v_{j}^{\prime}\right\rangle}_{\mathbb{B}^{\prime}}
$$

How do the components of $|a\rangle$ transform?

$$
\left[\begin{array}{c}
a_{1}^{\prime} \\
a_{2}^{\prime} \\
\vdots
\end{array}\right] \stackrel{?}{ }\left[\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots
\end{array}\right]
$$

To answer this, we must find the similarity transformation!

Transformation of Base Kets

Since both bases are complete

$$
\begin{aligned}
\left|v_{i}^{\prime}\right\rangle & =\sum_{j} S_{j i}\left|v_{j}\right\rangle \\
\left|v_{j}\right\rangle & =\sum_{k} \boldsymbol{S}_{k j}^{-1}\left|v_{k}^{\prime}\right\rangle
\end{aligned}
$$

Proof is very easy!
Let's take $\quad\left|v_{j}\right\rangle=\sum_{k} \boldsymbol{P}_{k j}\left|v_{k}^{\prime}\right\rangle \quad \ldots$ assuming $\boldsymbol{P} \neq \boldsymbol{S}^{-1}$
then $\quad\left|v_{i}^{\prime}\right\rangle=\sum_{j} \boldsymbol{S}_{j i} \sum_{k} \boldsymbol{P}_{k j}\left|v_{k}^{\prime}\right\rangle=\sum_{k}(\underbrace{\sum_{j} \boldsymbol{P}_{k j} \boldsymbol{S}_{j i}}_{(\boldsymbol{P S})_{k i}})\left|v_{k}^{\prime}\right\rangle$
only valid if, $\boldsymbol{P S}=\mathbf{I} \ldots$ base kets are linearly independent yielding, $\boldsymbol{P}=\boldsymbol{S}^{-1} \quad \ldots$ contradicts our asumption

Transformation of an Arbitrary Ket

An arbitrary ket

$$
|a\rangle=\sum_{i} a_{i}\left|v_{i}\right\rangle=\sum_{i} a_{i}(\underbrace{\sum_{j} S_{j i}^{-1}\left|v_{j}^{\prime}\right\rangle}_{\left|v_{i}\right\rangle})=\sum_{j}(\underbrace{\sum_{i} S_{j i}^{-1} a_{i}}_{a_{j}^{\prime}})\left|v_{j}^{\prime}\right\rangle
$$

yielding a transformation rule,

$$
\underbrace{\left[\begin{array}{c}
a_{1}^{\prime} \\
a_{2}^{\prime} \\
\vdots
\end{array}\right]}_{\text {new }}=\underbrace{\left[\begin{array}{ccc}
S_{11}^{-1} & S_{12}^{-1} & \ldots \\
S_{12}^{-1} & S_{22}^{-1} & \ldots \\
\vdots & \vdots & \ddots
\end{array}\right]}_{S^{-1}} \underbrace{\left[\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots
\end{array}\right]}_{\text {old }}
$$

Transformation of Operators

Imagine the operation

$$
|a\rangle=\boldsymbol{X}|b\rangle
$$

Matrix representation in \mathbb{B}

$$
\left[\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots
\end{array}\right]=\underbrace{\left[\begin{array}{ccc}
\boldsymbol{X}_{11} & \boldsymbol{X}_{12} & \ldots \\
\boldsymbol{X}_{21} & \boldsymbol{X}_{22} & \ldots \\
\vdots & \vdots & \ddots
\end{array}\right]}_{\text {known }}\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots
\end{array}\right]
$$

Matrix representation in \mathbb{B}^{\prime}

$$
\left[\begin{array}{c}
a_{1}^{\prime} \\
a_{2}^{\prime} \\
\vdots
\end{array}\right]=\underbrace{\left[\begin{array}{ccc}
\boldsymbol{X}_{11}^{\prime} & \boldsymbol{X}_{12}^{\prime} & \cdots \\
\boldsymbol{X}_{21}^{\prime} & \boldsymbol{X}_{22}^{\prime} & \cdots \\
\vdots & \vdots & \ddots
\end{array}\right]}_{\text {unknown }}\left[\begin{array}{c}
b_{1}^{\prime} \\
b_{2}^{\prime} \\
\vdots
\end{array}\right]
$$

Operator Elements in New Basis

Lets recall the operation in \mathbb{B}^{\prime}

$$
\left[\begin{array}{c}
a_{1}^{\prime} \\
a_{2}^{\prime} \\
\vdots
\end{array}\right]=\boldsymbol{X}^{\prime}\left[\begin{array}{c}
b_{1}^{\prime} \\
b_{2}^{\prime} \\
\vdots
\end{array}\right]=\boldsymbol{S}^{-1}\left[\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots
\end{array}\right]=\boldsymbol{X}^{\prime} \boldsymbol{S}^{-1}\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots
\end{array}\right]
$$

Applying \boldsymbol{S} (from left) to the last two,

$$
\left[\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots
\end{array}\right]=\boldsymbol{S} \boldsymbol{X}^{\prime} \boldsymbol{S}^{-1}\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots
\end{array}\right]=\boldsymbol{X}\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots
\end{array}\right]
$$

giving us,

$$
\begin{aligned}
\boldsymbol{S} \boldsymbol{X}^{\prime} \boldsymbol{S}^{-1} & =\boldsymbol{X} \\
\boldsymbol{X}^{\prime} & =\boldsymbol{S}^{-1} \boldsymbol{X} \boldsymbol{S}
\end{aligned}
$$

Application in a Problem

Consider two bases

$$
\mathbb{B}=\left\{\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right\} \quad \text { and } \quad \mathbb{B}^{\prime}=\left\{\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right\}
$$

Some linear operator \boldsymbol{X} has the following representation in \mathbb{B}

$$
\boldsymbol{X}=\left[\begin{array}{ccc}
1 & 2 & -1 \\
0 & -1 & 0 \\
1 & 0 & 7
\end{array}\right]
$$

What is the representation of \boldsymbol{X} in \mathbb{B}^{\prime} ?
To answer this, we need to construct \boldsymbol{S} first!

Similarity Operator S

Recalling that

$$
\mathbb{B}=\left\{\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right\} \quad \text { and } \quad \mathbb{B}^{\prime}=\left\{\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right\}
$$

and

$$
\left|v_{i}^{\prime}\right\rangle=\sum_{j} s_{j i}\left|v_{j}\right\rangle
$$

we get

$$
\begin{gathered}
{\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]}
\end{gathered} \underbrace{\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]}_{\left|v_{1}^{\prime}\right\rangle}, \underbrace{\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]}_{\left|v_{1}\right\rangle}=\underbrace{\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]}_{\left|v_{2}^{\prime}\right\rangle}+\underbrace{\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]}_{\left|v_{1}\right\rangle}, \underbrace{\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]}_{\left|v_{2}\right\rangle}=\underbrace{\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]}_{\left|v_{3}^{\prime}\right\rangle}+\underbrace{\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]}_{\left|v_{1}\right\rangle}+\underbrace{\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]}_{\left|v_{2}\right\rangle} \underbrace{\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right] \text { and } S^{-1}=\left[\begin{array}{ccc}
1 & -1 & 0 \\
0 & 1 & -1 \\
0 & 0 & 1
\end{array}\right]}_{\left|v_{3}\right\rangle}
$$

Transformation of Operator X

Armed with \boldsymbol{S} and \boldsymbol{S}^{-1}, we compute

$$
\begin{aligned}
\boldsymbol{X}^{\prime}=\boldsymbol{S}^{-1} \boldsymbol{X} \boldsymbol{S} & =\left[\begin{array}{ccc}
1 & -1 & 0 \\
0 & 1 & -1 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 2 & -1 \\
0 & -1 & 0 \\
1 & 0 & 7
\end{array}\right]\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{ccc}
1 & 4 & 3 \\
-1 & -2 & -9 \\
1 & 1 & 8
\end{array}\right]
\end{aligned}
$$

This is the matrix representation of \boldsymbol{X} in \mathbb{B}^{\prime}

