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Eigenvalue Equation

If a linear operator A acts on some |v〉, such that

A |v〉 = λ |v〉 , λ ∈ C

then |v〉 is called the eigenvector of A with eigenvalue λ

Q. How do we determine λ and |v〉 for a given operator A?
A. Transposing the eigenvalue equation,

(A− λI ) |v〉 = 0

with trivial solutions,

A− λI = 0 or |v〉 = 0

that have no physical utility!



Solving the Eigenvalue Problem

Non trivial solutions for

(A− λI︸ ︷︷ ︸
B

) |v〉 = 0

exist only if B is singular, i.e, det (B) = 0

Illustration in 2D space

For det (B) 6= 0 :

[
α β
γ δ

]
︸ ︷︷ ︸

B

[
v1
v2

]
︸︷︷︸
|v〉

= 0 =⇒ v1 = v2 = 0 “null ket”

For det (B) = 0 :

[
α β

γ βγ
α

]
︸ ︷︷ ︸

B

[
v1
v2

]
︸︷︷︸
|v〉

= 0 =⇒ v1 = −β
α
v2 “family”



Characteristic Equation

If A is an N × N matrix, then

det (A− λI ) = 0

is an Nth order polynomial equation in λ with roots, λ1, λ2 . . . λN

The corresponding eigenvectors are obtained from,

(A− Iλ1) |v1〉 = 0

(A− Iλ2) |v2〉 = 0
...

(A− IλN) |vN〉 = 0



Example

The x-component of the spin angular momentum of an electron is
denoted by the Pauli spin operator

σx =

[
0 1
1 0

]
Find the eigenvalues and eigenvectors of σx .
Solution: From the characteristic polynomial,

det (σx − λI ) = det

[
−λ 1
1 −λ

]
= λ2 − 1 = 0, yielding λ = ±1

For λ = 1 :

[
−1 1
1 −1

] [
x1
y1

]
= 0 =⇒ x1 = y1 i.e. |v1〉 =

[
1
1

]
1√
2

For λ = −1 :

[
1 1
1 1

] [
x2
y2

]
= 0 =⇒ x2 = −y2 i.e. |v2〉 =

[
1
−1

]
1√
2



Eigenvectors can form a Basis

Eigenvectors with distinct eigenvalues are linearly independent

Proof: Let A be a N2 matrix with eigenvalues λ1︸︷︷︸
|v1〉

, λ2︸︷︷︸
|v2〉

, . . . λN︸︷︷︸
|vN〉

First assume that |v1〉 and |v2〉 are linearly dependent

|v1〉 = α2 |v2〉 . . . α2 6= 0

λ1 |v1〉 = α2λ1 |v2〉
λ1 |v1〉 = α2λ2 |v2〉 . . . from A |v1〉

Subtracting last two, we get

0 = (λ2 − λ1) |v2〉 not possible, since λ2 6= λ1

Therefore |v1〉 and |v2〉 must be linearly independent



Extending to Other Kets . . .

Next assume that

|v3〉 = α1 |v1〉+ α2 |v2〉 . . . α1 6= 0 & α2 6= 0

λ3 |v3〉 = λ3α1 |v1〉+ λ3α2 |v2〉
λ3 |v3〉 = λ1α1 |v1〉+ λ2α2 |v2〉 . . . from A |v3〉

Subtracting last two,

0 = α1(λ3 − λ1) |v1〉+ α2(λ3 − λ2) |v2〉

This is not possible as λ1,2,3 are distinct (a contradiction!)
Thus, |v1〉 , |v2〉 and |v3〉 must be linearly independent

...
continue and show all {|v1〉 , |v2〉 . . . |vN〉}︸ ︷︷ ︸

basis

are linearly independent



Normal Operators

Commute with their Hermitian adjoint

[A,A†]︸ ︷︷ ︸
commutator

= AA† − A†A = 0

Eg. include Hermitian, A = A† and symmetric, A = AT operators

Theorem
A and A† share the eigenvectors but with conjugated eigenvalues

Proof: For a typical eigenket of normal A, i.e |v〉, we have

0 = 〈v |[A,A†]|v〉
= 〈v |(AA† − A†A)|v〉
= 〈v |((A− λI )(A† − λ∗I )− (A† − λ∗I )(A− λI ))|v〉
= 〈v |(A− λI )(A† − λ∗I )|v〉 − 〈v |(A† − λ∗I )(A− λI )|v〉
= 〈v |(A− λI )(A† − λ∗I )|v〉 . . . (A− λI ) |v〉 = 0

= |(A† − λ∗I ) |v〉 |2 . . . norm2

Only possible if, (A† − λ∗I ) |v〉 = 0



Normal Operators

Their eigenvectors with distinct eigenvalues are orthogonal

Proof: For any two eigenkets of the normal A, say |vi 〉 and |vj〉,

〈vi |A†A|vj〉 = |λj |2 〈vi |vj〉
= (A |vi 〉)†︸ ︷︷ ︸

〈vi |A†

·A |vj〉

= (λi |vi 〉)† · λj |vj〉
= λ∗i λj 〈vi |vj〉

Subtracting last from first, leads to

λj(λ
∗
j − λ∗i ) 〈vi |vj〉 = 0

Since λi 6= λj , our kets must be orthogonal, i.e, 〈vi |vj〉 = 0


