Lecture 7: Hermitian Operators

Ashwin Joy

Department of Physics, IIT Madras, Chennai - 600036

Hermitian Operators

- Represent physical observables such as spin, energy . . .
- Mathematically equal to their Hermitian adjoint, $\mathbf{A} = \mathbf{A}^{\dagger}$

Theorem

Their eigenvalues are real and the eigenkets belonging to distinct eigenvalues are orthogonal

<u>Proof:</u> Pick two eigenkets $|v_i\rangle$ and $|v_j\rangle$ with eigenvalues $\lambda_i \neq \lambda_j$

$$\langle v_i | \mathbf{A} | v_j \rangle = \lambda_j \langle v_i | v_j \rangle \qquad \dots \mathbf{A} | v_j \rangle = \lambda_j | v_j \rangle$$

$$= \langle v_j | \mathbf{A} | v_i \rangle^* \qquad \dots \mathbf{A}^{\dagger} = \mathbf{A}$$

$$= \lambda_i^* \langle v_i | v_j \rangle \qquad \dots \langle v_j | v_i \rangle^* = \langle v_i | v_j \rangle$$

Subtracting last from first, $(\lambda_j - \lambda_i^*) \langle v_i | v_j \rangle = 0$ For j = i, we get $\lambda_j = \lambda_j^*$ "Eigenvalues are **real**" For $j \neq i$, we get $\langle v_i | v_j \rangle = 0$ "Eigenkets are **orthogonal**"

Eigenbasis of Hermitian A

The eigenkets can be normalized to set up an orthonormal basis

$$\mathbb{V} = \{\ket{v_1}, \ket{v_2}, \dots \ket{v_N}\} \quad \text{ with } \langle v_i | v_j \rangle = \delta_{ij}$$

It is easy to see that \boldsymbol{A} is diagonal in this $\boldsymbol{eigenbasis}$, i.e

$$\langle v_k | \mathbf{A} | v_j \rangle = \lambda_j \delta_{ij} = (\mathbf{A}_D)_{ij}$$

————— Representation of ${m A}$ in ${\mathbb V}$ —

Consider a typical vector
$$|a\rangle = \sum_{l} a_{l} |v_{l}\rangle$$

Using closure of orthonormal \mathbb{V} , we write $m{A} = \sum_{ij} \ket{v_i} ra{v_i} m{A} \ket{v_j} ra{v_j}$

The k^{th} component of $\mathbf{A} | a \rangle$,

$$\langle v_k | \boldsymbol{A} | a \rangle = \sum_j \underbrace{\langle v_k | \boldsymbol{A} | v_j \rangle}_{\boldsymbol{A}_{ki}} a_j$$

Diagonalization of Hermitian A

- ullet Given $oldsymbol{A}$ in some orthonormal basis $\mathbb{B}=\left\{\ket{e_1},\ket{e_2},\ldots\right\}$
- Construct the eigenbasis of **A**, say $\mathbb{V} = \{ |v_1\rangle, |v_2\rangle, \ldots \}$
- ullet Transforming ${\mathbb B}$ to ${\mathbb V}$ will diagonalize ${m A}$
- ullet Both ${\mathbb B}$ and ${\mathbb V}$ are orthonormal, transformation will be unitary!

Procedure

$$(\mathbf{A}_D)_{ij} = \langle v_i | \mathbf{A} | v_j \rangle$$
 ... matrix elements in \mathbb{V}

$$= \sum_{kl} \langle v_i | e_k \rangle \langle e_k | \mathbf{A} | e_l \rangle \langle e_l | v_j \rangle$$
 ... closure of \mathbb{B}

$$= \sum_{kl} \mathbf{U}_{ik}^{\dagger} \mathbf{A}_{kl} \mathbf{U}_{lj}$$

$$= (\mathbf{U}^{\dagger} \mathbf{A} \mathbf{U})_{ij}$$

Yielding the diagonalization, $oldsymbol{A}_{\mathsf{D}} = oldsymbol{U}^\dagger oldsymbol{A} oldsymbol{U}$

Problems for Hermitian A

Pb. Show that,

$$\mathsf{Tr} \; (\boldsymbol{A}) \; = \; \sum_{i} \lambda_{i} \; \ldots \; \mathsf{sum} \; \mathsf{of} \; \mathsf{eigenvalues}$$

$$\mathsf{det} \; (\boldsymbol{A}) \; = \; \prod_{i} \lambda_{i} \; \ldots \; \mathsf{product} \; \mathsf{of} \; \mathsf{eigenvalues}$$

Proof —

Clearly,

$$\sum_{i} \lambda_{i} = \operatorname{Tr} \left(\mathbf{A}_{D} \right) = \operatorname{Tr} \left(\mathbf{U}^{\dagger} \mathbf{A} \mathbf{U} \right) = \operatorname{Tr} \left(\mathbf{A} \mathbf{U} \mathbf{U}^{\dagger} \right) = \operatorname{Tr} \left(\mathbf{A} \right)$$

Similarly,

$$\prod_{i} \lambda_{i} = \det (\boldsymbol{A}_{D}) = \det (\boldsymbol{U}^{\dagger} \boldsymbol{A} \boldsymbol{U}) = \det (\boldsymbol{U}^{\dagger} \boldsymbol{U}) \cdot \det (\boldsymbol{A}) = \det (\boldsymbol{A})$$

Functions of a Hermitian A

Pb. Consider a function

$$e^{\mathbf{A}} \equiv 1 + \mathbf{A} + \frac{\mathbf{A}^2}{2!} + \frac{\mathbf{A}^3}{3!} \dots$$

Such functions are used as time evolution operators in quantum mechanics. Show that the trace and determinant are respectively,

$$\mathsf{Tr}\;(e^{m{A}}) = \sum_{i=1}^{N} e^{\lambda_i}$$
 $\mathsf{det}\;(e^{m{A}}) = e^{\sum_{i=1}^{N} \lambda_i}$

where λ_i are the eigenvalues of \boldsymbol{A}

Functions of a Hermitian A

$$e^{\mathbf{A}} = e^{\mathbf{U}\mathbf{A}_{\mathrm{D}}\mathbf{U}^{\dagger}} = 1 + \mathbf{U}\mathbf{A}_{\mathrm{D}}\mathbf{U}^{\dagger} + \frac{1}{2!}(\mathbf{U}\mathbf{A}_{\mathrm{D}}\mathbf{U}^{\dagger})^{2} + \frac{1}{3!}(\mathbf{U}\mathbf{A}_{\mathrm{D}}\mathbf{U}^{\dagger})^{3} \dots$$

$$= \mathbf{U}\left(1 + \mathbf{A}_{\mathrm{D}} + \frac{1}{2!}\mathbf{A}_{\mathrm{D}}^{2} + \frac{1}{3!}\mathbf{A}_{\mathrm{D}}^{3} \dots\right)\mathbf{U}^{\dagger}$$

$$= \mathbf{U}\begin{bmatrix}\sum_{k=0}^{\infty} \frac{\lambda_{1}^{k}}{k!} & 0 & \dots \\ 0 & \sum_{k=0}^{\infty} \frac{\lambda_{2}^{k}}{k!} & \dots \\ \vdots & \vdots & \ddots \end{bmatrix}\mathbf{U}^{\dagger}$$

$$= \mathbf{U}\begin{bmatrix}e^{\lambda_{1}} & 0 & \dots \\ 0 & e^{\lambda_{2}} & \dots \\ \vdots & \vdots & \ddots \end{bmatrix}\mathbf{U}^{\dagger}$$

$$\vdots & \vdots & \ddots \end{bmatrix}$$

Therefore,

$$\operatorname{Tr} \left(e^{\mathbf{A}} \right) \ = \ \sum_{i=1}^{N} e^{\lambda_i} \quad \dots \operatorname{Tr} \text{ is cyclic}$$

$$\operatorname{det} \left(e^{\mathbf{A}} \right) \ = \ e^{\sum_{i=1}^{N} \lambda_i} \quad \dots \operatorname{det} \left(\mathbf{U} \mathbf{U}^{\dagger} \right) = 1$$