Lecture 7: Hermitian Operators

Ashwin Joy

Department of Physics, IIT Madras, Chennai - 600036

Hermitian Operators

- Represent physical observables such as spin, energy ...
- Mathematically equal to their Hermitian adjoint, $\boldsymbol{A}=\boldsymbol{A}^{\dagger}$

Theorem

Their eigenvalues are real and the eigenkets belonging to distinct eigenvalues are orthogonal
Proof: Pick two eigenkets $\left|v_{i}\right\rangle$ and $\left|v_{j}\right\rangle$ with eigenvalues $\lambda_{i} \neq \lambda_{j}$

$$
\begin{aligned}
\left\langle v_{i}\right| \boldsymbol{A}\left|v_{j}\right\rangle & =\lambda_{j}\left\langle v_{i} \mid v_{j}\right\rangle & & \ldots \boldsymbol{A}\left|v_{j}\right\rangle=\lambda_{j}\left|v_{j}\right\rangle \\
& =\left\langle v_{j}\right| \boldsymbol{A}\left|v_{i}\right\rangle^{*} & & \ldots \boldsymbol{A}^{\dagger}=\boldsymbol{A} \\
& =\lambda_{i}^{*}\left\langle v_{i} \mid v_{j}\right\rangle & & \ldots\left\langle v_{j} \mid v_{i}\right\rangle^{*}=\left\langle v_{i} \mid v_{j}\right\rangle
\end{aligned}
$$

Subtracting last from first, $\left(\lambda_{j}-\lambda_{i}^{*}\right)\left\langle v_{i} \mid v_{j}\right\rangle=0$
For $j=i$, we get $\lambda_{j}=\lambda_{j}^{*} \quad$ "Eigenvalues are real"
For $j \neq i$, we get $\left\langle v_{i} \mid v_{j}\right\rangle=0 \quad$ "Eigenkets are orthogonal"

Eigenbasis of Hermitian \boldsymbol{A}

The eigenkets can be normalized to set up an orthonormal basis

$$
\mathbb{V}=\left\{\left|v_{1}\right\rangle,\left|v_{2}\right\rangle, \ldots\left|v_{N}\right\rangle\right\} \quad \text { with }\left\langle v_{i} \mid v_{j}\right\rangle=\delta_{i j}
$$

It is easy to see that \boldsymbol{A} is diagonal in this eigenbasis, i.e

$$
\left\langle v_{k}\right| \boldsymbol{A}\left|v_{j}\right\rangle=\lambda_{j} \delta_{i j}=\left(\boldsymbol{A}_{D}\right)_{i j}
$$

Representation of \boldsymbol{A} in \mathbb{V}
Consider a typical vector $|a\rangle=\sum_{l} a_{l}\left|v_{l}\right\rangle$
Using closure of orthonormal \mathbb{V}, we write $\boldsymbol{A}=\sum_{i j}\left|v_{i}\right\rangle\left\langle v_{i}\right| \boldsymbol{A}\left|v_{j}\right\rangle\left\langle v_{j}\right|$ The $k^{\text {th }}$ component of $\boldsymbol{A}|a\rangle$,

$$
\left\langle v_{k}\right| \boldsymbol{A}|a\rangle=\sum_{j} \underbrace{\left\langle v_{k}\right| \boldsymbol{A}\left|v_{j}\right\rangle}_{\boldsymbol{A}_{k j}} a_{j}
$$

Diagonalization of Hermitian \boldsymbol{A}

- Given \boldsymbol{A} in some orthonormal basis $\mathbb{B}=\left\{\left|e_{1}\right\rangle,\left|e_{2}\right\rangle, \ldots\right\}$
- Construct the eigenbasis of \boldsymbol{A}, say $\mathbb{V}=\left\{\left|v_{1}\right\rangle,\left|v_{2}\right\rangle, \ldots\right\}$
- Transforming \mathbb{B} to \mathbb{V} will diagonalize \boldsymbol{A}
- Both \mathbb{B} and \mathbb{V} are orthonormal, transformation will be unitary!

Procedure

$$
\begin{aligned}
\left(\boldsymbol{A}_{D}\right)_{i j} & =\left\langle v_{i}\right| \boldsymbol{A}\left|v_{j}\right\rangle \ldots \text { matrix elements in } \mathbb{V} \\
& =\sum_{k l}\left\langle v_{i} \mid e_{k}\right\rangle\left\langle e_{k}\right| \boldsymbol{A}\left|e_{l}\right\rangle\left\langle e_{l} \mid v_{j}\right\rangle \quad \ldots \text { closure of } \mathbb{B} \\
& =\sum_{k l} \boldsymbol{U}_{i k}^{\dagger} \boldsymbol{A}_{k l} \boldsymbol{U}_{l j} \\
& =\left(\boldsymbol{U}^{\dagger} \boldsymbol{A} \boldsymbol{U}\right)_{i j}
\end{aligned}
$$

Yielding the diagonalization, $\boldsymbol{A}_{\mathrm{D}}=\boldsymbol{U}^{\dagger} \boldsymbol{A} \boldsymbol{U}$

Problems for Hermitian \boldsymbol{A}

Pb. Show that,

$$
\begin{array}{rll}
\operatorname{Tr}(\boldsymbol{A}) & =\sum_{i} \lambda_{i} & \ldots \text { sum of eigenvalues } \\
\operatorname{det}(\boldsymbol{A}) & =\prod_{i} \lambda_{i} & \ldots \text { product of eigenvalues }
\end{array}
$$

Proof

Clearly,

$$
\sum_{i} \lambda_{i}=\operatorname{Tr}\left(\boldsymbol{A}_{D}\right)=\operatorname{Tr}\left(\boldsymbol{U}^{\dagger} \boldsymbol{A} \boldsymbol{U}\right)=\operatorname{Tr}\left(\boldsymbol{A} \boldsymbol{U} \boldsymbol{U}^{\dagger}\right)=\operatorname{Tr}(\boldsymbol{A})
$$

Similarly,
$\prod \lambda_{i}=\operatorname{det}\left(\boldsymbol{A}_{D}\right)=\operatorname{det}\left(\boldsymbol{U}^{\dagger} \boldsymbol{A} \boldsymbol{U}\right)=\operatorname{det}\left(\boldsymbol{U}^{\dagger} \boldsymbol{U}\right) \cdot \operatorname{det}(\boldsymbol{A})=\operatorname{det}(\boldsymbol{A})$

Functions of a Hermitian \boldsymbol{A}

Pb. Consider a function

$$
e^{\boldsymbol{A}} \equiv 1+\boldsymbol{A}+\frac{\boldsymbol{A}^{2}}{2!}+\frac{\boldsymbol{A}^{3}}{3!} \cdots
$$

Such functions are used as time evolution operators in quantum mechanics. Show that the trace and determinant are respectively,

$$
\begin{aligned}
\operatorname{Tr}\left(e^{\boldsymbol{A}}\right) & =\sum_{i=1}^{N} e^{\lambda_{i}} \\
\operatorname{det}\left(e^{\boldsymbol{A}}\right) & =e^{\sum_{i=1}^{N} \lambda_{i}}
\end{aligned}
$$

where λ_{i} are the eigenvalues of \boldsymbol{A}

Functions of a Hermitian \boldsymbol{A}

$$
\begin{aligned}
e^{\boldsymbol{A}}=e^{\boldsymbol{U} \boldsymbol{A}_{\mathrm{D}} \boldsymbol{U}^{\dagger}} & =1+\boldsymbol{U} \boldsymbol{A}_{\mathrm{D}} \boldsymbol{U}^{\dagger}+\frac{1}{2!}\left(\boldsymbol{U} \boldsymbol{A}_{\mathrm{D}} \boldsymbol{U}^{\dagger}\right)^{2}+\frac{1}{3!}\left(\boldsymbol{U} \boldsymbol{A}_{\mathrm{D}} \boldsymbol{U}^{\dagger}\right)^{3} \ldots \\
& =\boldsymbol{U}\left(1+\boldsymbol{A}_{\mathrm{D}}+\frac{1}{2!} \boldsymbol{A}_{\mathrm{D}}^{2}+\frac{1}{3!} \boldsymbol{A}_{\mathrm{D}}^{3} \ldots\right) \boldsymbol{U}^{\dagger} \\
& =\boldsymbol{U}\left[\begin{array}{ccc}
\sum_{k=0}^{\infty} \frac{\lambda_{1}^{k}}{k!} & 0 & \cdots \\
0 & \sum_{k=0}^{\infty} \frac{\lambda_{2}^{k}}{k!} & \cdots \\
\vdots & \vdots & \ddots
\end{array}\right] \boldsymbol{U}^{\dagger} \\
& =\boldsymbol{U}\left[\begin{array}{ccc}
e^{\lambda_{1}} & 0 & \cdots \\
0 & e^{\lambda_{2}} & \cdots \\
\vdots & \vdots & \ddots
\end{array}\right] \boldsymbol{U}^{\dagger}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\operatorname{Tr}\left(e^{\boldsymbol{A}}\right) & =\sum_{i=1}^{N} e^{\lambda_{i}} \ldots \operatorname{Tr} \text { is cyclic } \\
\operatorname{det}\left(e^{\boldsymbol{A}}\right) & =e^{\sum_{i=1}^{N} \lambda_{i}} \quad \ldots \operatorname{det}\left(\boldsymbol{U} \boldsymbol{U}^{\dagger}\right)=1
\end{aligned}
$$

