# Lecture 8: Simultaneous Diagonalization 

Ashwin Joy

Department of Physics, IIT Madras, Chennai - 600036

## Motivation in Quantum Physics

- Physical observables of interest are energy $\boldsymbol{H}$, spin $\boldsymbol{\sigma}$ etc.
- These observables are denoted by Hermitian operators
- Observables are measured simultaneously only in a shared eigenbasis
- Need to diagonalize their corresponding Hermitian operators!


## Simultaneous Diagonalization of Hermitian Operators

For some Hermitian $\boldsymbol{A}$ and $\boldsymbol{B}$, there exists a unitary $\boldsymbol{U}$, such that

$$
\begin{aligned}
\boldsymbol{U}^{\dagger} \boldsymbol{A} \boldsymbol{U}= & \boldsymbol{A}_{\mathrm{D}} \quad \text { and } \quad \boldsymbol{U}^{\dagger} \boldsymbol{B} \boldsymbol{U}=\boldsymbol{B}_{\mathrm{D}} \\
& \text { iff }[\boldsymbol{A}, \boldsymbol{B}]=0
\end{aligned}
$$

Proof
Let a unitary $\boldsymbol{U}$ transform the operator $\boldsymbol{A}$ to its eigenbasis

$$
\mathbb{V}_{\mathbb{A}}=\left\{\left|v_{1}\right\rangle,\left|v_{2}\right\rangle,\left|v_{3}\right\rangle \ldots\left|v_{N}\right\rangle\right\}
$$

A must be diagonal in $\mathbb{V}_{\mathbb{A}}$

$$
\boldsymbol{A}_{\mathrm{D}}=\left[\begin{array}{ccc}
\alpha_{1} & 0 & \ldots \\
0 & \alpha_{2} & \ldots \\
\vdots & \vdots & \ddots
\end{array}\right] \quad \text { with eigenvalues } \alpha_{i}
$$

Note the commutator will not change,

$$
\left(\boldsymbol{U}^{\dagger} \boldsymbol{A} \boldsymbol{U}\right)\left(\boldsymbol{U}^{\dagger} \boldsymbol{B} \boldsymbol{U}\right)-\left(\boldsymbol{U}^{\dagger} \boldsymbol{B} \boldsymbol{U}\right)\left(\boldsymbol{U}^{\dagger} \boldsymbol{A} \boldsymbol{U}\right)=\boldsymbol{U}^{\dagger}[\boldsymbol{A}, \boldsymbol{B}] \boldsymbol{U}=0
$$

## What happens to $B$ in $\mathbb{V}_{A}$ ?

To answer this, lets look at the elements of the commutator in $\mathbb{V}_{A}$

$$
\begin{aligned}
0 & =\left[\left(\boldsymbol{U}^{\dagger} \boldsymbol{A} \boldsymbol{U}\right),\left(\boldsymbol{U}^{\dagger} \boldsymbol{B} \boldsymbol{U}\right)\right]_{i j} \\
& =\left[\boldsymbol{A}_{\mathrm{D}}, \boldsymbol{B}^{\prime}\right]_{i j} \\
& =\left(\boldsymbol{A}_{\mathrm{D}} \boldsymbol{B}^{\prime}\right)_{i j}-\left(\boldsymbol{B}^{\prime} \boldsymbol{A}_{\mathrm{D}}\right)_{i j} \\
& =\sum_{k} \boldsymbol{A}_{\mathrm{D} i k} \boldsymbol{B}_{k j}^{\prime}-\sum_{l} \boldsymbol{B}_{i l}^{\prime} \boldsymbol{A}_{\mathrm{D}_{l j}} \\
& =\alpha_{i} \boldsymbol{B}_{i j}^{\prime}-\boldsymbol{B}_{i j}^{\prime} \alpha_{j} \quad \ldots \boldsymbol{A}_{\mathrm{D} i k}=\alpha_{i} \delta_{i k} \\
& =\left(\alpha_{i}-\alpha_{j}\right) \boldsymbol{B}_{i j}^{\prime}
\end{aligned}
$$

yielding $\boldsymbol{B}_{i j}^{\prime}=0\left(\right.$ diagonal $\left.\boldsymbol{B}^{\prime}\right)$, provided all $\alpha_{i}$ are distinct

$$
\boldsymbol{U}^{\dagger} \boldsymbol{A} \boldsymbol{U}=\boldsymbol{A}_{\mathrm{D}} \quad \text { and } \quad \boldsymbol{U}^{\dagger} \boldsymbol{B} \boldsymbol{U}=\boldsymbol{B}_{\mathrm{D}}
$$

## Handling Repeated Eigenvalues

Suppose $\alpha_{1}=\alpha_{2}$, then we have $\boldsymbol{B}_{12}^{\prime} \neq 0$. Therefore,

$$
\boldsymbol{B}^{\prime}=\left[\begin{array}{ccccc}
\boldsymbol{B}_{11}^{\prime} & \boldsymbol{B}_{12}^{\prime} & 0 & 0 & \ldots \\
\boldsymbol{B}_{12}^{\prime *} & \boldsymbol{B}_{22}^{\prime} & 0 & 0 & \ldots \\
0 & 0 & \beta_{3} & 0 & \ldots \\
0 & 0 & 0 & \beta_{4} & \ldots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right] \quad \ldots \text { (partially diagonal) }
$$

Transform further to a new basis, $\mathbb{F}=\{\underbrace{\left|v_{1}^{\prime}\right\rangle,\left|v_{2}^{\prime}\right\rangle}_{\text {new }}, \underbrace{\left|v_{3}\right\rangle \ldots\left|v_{N}\right\rangle}_{\text {unchanged }}\}$ where the new eigenkets of $\boldsymbol{B}$,

$$
\begin{aligned}
\left|v_{1}^{\prime}\right\rangle & =\tilde{\boldsymbol{P}}_{11}\left|v_{1}\right\rangle+\tilde{\boldsymbol{P}}_{21}\left|v_{2}\right\rangle \\
\left|v_{2}^{\prime}\right\rangle & =\tilde{\boldsymbol{P}}_{12}\left|v_{1}\right\rangle+\tilde{\boldsymbol{P}}_{22}\left|v_{2}\right\rangle
\end{aligned}
$$

are taken as linear combinations of the degenerate $\left|v_{1}\right\rangle$ and $\left|v_{2}\right\rangle$

## Diagonalizes the upper-left block of $B^{\prime}$

With the unitary $\tilde{\boldsymbol{P}}\left(\tilde{\boldsymbol{P}}_{i j}=\left\langle v_{i} \mid v_{j}^{\prime}\right\rangle\right)$, we have

$$
\tilde{\boldsymbol{P}}^{\dagger} \underbrace{\left[\begin{array}{ll}
\boldsymbol{B}_{11}^{\prime} & \boldsymbol{B}_{12}^{\prime} \\
\boldsymbol{B}_{12}^{\prime *} & \boldsymbol{B}_{22}^{\prime}
\end{array}\right]}_{2 \times 2 \text { block }} \tilde{\boldsymbol{P}}=\left[\begin{array}{cc}
\beta_{1} & 0 \\
0 & \beta_{2}
\end{array}\right]
$$

Hence the unitary $\boldsymbol{P}=\left[\begin{array}{ccccc}\tilde{\boldsymbol{P}}_{11} & \tilde{\boldsymbol{P}}_{12} & 0 & 0 & \ldots \\ \tilde{\boldsymbol{P}}_{21} & \tilde{\boldsymbol{P}}_{22} & 0 & 0 & \ldots \\ 0 & 0 & 1 & 0 & \ldots \\ 0 & 0 & 0 & 1 & \ldots \\ \vdots & \vdots & \vdots & \vdots & \ddots\end{array}\right]=\left[\begin{array}{cc}\tilde{\boldsymbol{P}} & 0 \\ 0 & \boldsymbol{I}\end{array}\right]$
will diagonalize $\boldsymbol{B}^{\prime}$, i.e, $\boldsymbol{P}^{\dagger} \boldsymbol{B}^{\prime} \boldsymbol{P}=\boldsymbol{B}_{\mathrm{D}}$
Note that,

$$
\boldsymbol{P}^{\dagger} \boldsymbol{A}_{\mathrm{D}} \boldsymbol{P}=\boldsymbol{A}_{\mathrm{D}} \quad \text { since } \alpha_{1}=\alpha_{2}
$$

## Compiling

We observe that

$$
\begin{aligned}
& \boldsymbol{B}_{\mathrm{D}}=\boldsymbol{P}^{\dagger} \boldsymbol{B}^{\prime} \boldsymbol{P}=\boldsymbol{P}^{\dagger}\left(\boldsymbol{U}^{\dagger} \boldsymbol{B} \boldsymbol{U}\right) \boldsymbol{P}=(\boldsymbol{U P})^{\dagger} \boldsymbol{B}(\boldsymbol{U P}) \\
& \boldsymbol{A}_{\mathrm{D}}=\boldsymbol{P}^{\dagger} \boldsymbol{A}_{\mathrm{D}} \boldsymbol{P}=\boldsymbol{P}^{\dagger}\left(\boldsymbol{U}^{\dagger} \boldsymbol{A} \boldsymbol{U}\right) \boldsymbol{P}=(\boldsymbol{U} \boldsymbol{P})^{\dagger} \boldsymbol{A}(\boldsymbol{U P})
\end{aligned}
$$

The unitary UP simultaneously diagonalizes both $\boldsymbol{A}$ and $\boldsymbol{B}$

## Problem

Q. In the standard basis, $\mathbb{B}=\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]\right\}$, consider two operators $\boldsymbol{A}$ and $\boldsymbol{B}$ with the following matrix presentations,

$$
\boldsymbol{A}=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right] \text { and } \boldsymbol{B}=\left[\begin{array}{ccc}
2 & 1 & 1 \\
1 & 0 & -1 \\
1 & -1 & 2
\end{array}\right]
$$

Find a transform that simultaneously diagonalizes both $\boldsymbol{A}$ and $\boldsymbol{B}$.
First check if they commute

$$
\boldsymbol{A} \boldsymbol{B}=\left[\begin{array}{ccc}
1 & 0 & -1 \\
3 & 0 & 3 \\
1 & 0 & -1
\end{array}\right] \neq\left[\begin{array}{ccc}
1 & 3 & 1 \\
0 & 0 & 0 \\
-1 & 3 & -1
\end{array}\right]=\boldsymbol{B} \boldsymbol{A}
$$

As discussed, $\boldsymbol{A}$ and $\boldsymbol{B}$ cannot be simultaneously diagonalized

