Lecture 13: Harmonic Pieces of f(z)

Ashwin Joy
Department of Physics, IIT Madras, Chennai - 600036

Analytical Functions have Harmonic Pieces

$f(z)=u(x, y)+i v(x, y)$ is analytic in some \mathcal{R}, if and only if

$$
\nabla^{2} u=0=\nabla^{2} v \quad \text { " } u \text { and } v \text { are harmonic in } \mathcal{R}^{\prime \prime}
$$

Proof

For necessary condition, we start from Cauchy-Riemann,

$$
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y} \quad \text { and } \quad \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}
$$

The Laplacian,

$$
\nabla^{2} u=\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=\frac{\partial^{2} v}{\partial x \partial y}-\frac{\partial^{2} v}{\partial y \partial x}=0
$$

As the second derivatives are continuous, they are also symmetric

Vice Versa is Also True

If $\nabla^{2} u=0$, then u is the real part of some analytic f

Proof

We construct an analytic function

$$
\begin{array}{rll}
g(z) & =\frac{\partial u}{\partial x}-i \frac{\partial u}{\partial y} & \ldots u \text { is harmonic } \\
& =f^{\prime}(z) & \ldots f \text { is the anti-derivative of } g \\
& =\frac{\partial U}{\partial x}+i \frac{\partial V}{\partial x} & \ldots f=U+i V \\
& =\frac{\partial U}{\partial x}-i \frac{\partial U}{\partial y} & \ldots g \text { is unique so } f \text { satisfies } C R
\end{array}
$$

On comparing the first and the last equation,

$$
u=U+\text { constant }
$$

Symmetry of Second Derivatives - Stokes Theorem

For a vector field \boldsymbol{A} in some flat region \mathcal{R} bounded by a curve \mathcal{C}

$$
\iint_{\mathcal{R}}(\boldsymbol{\nabla} \times \boldsymbol{A}) \cdot \mathrm{d} \mathcal{S}=\oint_{\mathcal{C}} \boldsymbol{A} \cdot \mathrm{d} \boldsymbol{I}
$$

Substituting $\boldsymbol{A}=(u, v), \mathrm{d} \mathcal{S}=\mathrm{d} x \mathrm{~d} y \hat{\boldsymbol{z}}$ and $\mathrm{d} \boldsymbol{I}=(\mathrm{d} x, \mathrm{~d} y)$, gives

$$
\iint_{\mathcal{R}}\left(\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}\right) \mathrm{d} x \mathrm{~d} y=\oint_{\mathcal{C}}(u \mathrm{~d} x+v \mathrm{~d} y) \quad \text {-Green's theorem }
$$

which requires u, v and their partial derivatives to be continuous.
Finally substituting $(u, v)=\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right)=\nabla f$, in Green's theorem

$$
\iint_{\mathcal{R}}\left(\frac{\partial^{2} f}{\partial x \partial y}-\frac{\partial^{2} f}{\partial y \partial x}\right) \mathrm{d} x \mathrm{~d} y=\oint_{\mathcal{C}}\left(\frac{\partial f}{\partial x} \mathrm{~d} x+\frac{\partial f}{\partial y} \mathrm{~d} y\right)=\oint_{\mathcal{C}} \mathrm{d} f=0
$$

Since the region \mathcal{R} is arbitrary, we can demand that the integrand in the surface integral vanishes, leading us to

$$
\frac{\partial^{2} f}{\partial x \partial y}=\frac{\partial^{2} f}{\partial y \partial x}
$$

the symmetry of mixed derivatives when $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}$ and their partial derivatives are continuous.

Symmetry of Second Derivatives - Divergence Theorem

We can also start with the 2D version of the divergence theorem -

$$
\iint_{\mathcal{R}}(\boldsymbol{\nabla} \cdot \boldsymbol{A}) \mathrm{d} \mathcal{S}=\oint_{\mathcal{C}} \boldsymbol{A} \cdot \mathrm{d} \boldsymbol{p}
$$

where $d \boldsymbol{p}=(\mathrm{d} y,-\mathrm{d} x)$ is outward normal to the line element $\mathrm{d} \boldsymbol{I}=(\mathrm{d} x, \mathrm{~d} y)$ on the curve \mathcal{C} bounding the region \mathcal{R}. Substituting
$\boldsymbol{A}=(v,-u)$, we get
$\iint_{\mathcal{R}}\left(\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}\right) \mathrm{d} x \mathrm{~d} y=\oint_{\mathcal{C}}(u \mathrm{~d} x+v \mathrm{~d} y) \quad$-Green's theorem
symmetry of mixed derivatives can now be proved as shown earlier.

Level Curves of u and v

Let $u(x, y)=y^{2}-x^{2}$ be the real part of some analytic $f(z)$.
Find its harmonic conjugate and plot some level curves.

From CR,

Solution

$$
\begin{aligned}
& \frac{\partial u}{\partial x}=-2 x=\frac{\partial v}{\partial y} \Longrightarrow v=-2 x y+c_{1}(x) \\
& \frac{\partial u}{\partial y}=2 y=-\frac{\partial v}{\partial x} \Longrightarrow v=-2 x y+c_{2}(y)
\end{aligned}
$$

Implying $c_{1}(x)=c_{2}(y)=c$, thus

$$
f(z)=y^{2}-x^{2}+i(-2 x y+c)=-z^{2}+c
$$

Lets plot level curves of

$$
u=y^{2}-x^{2}=c_{1} \quad \text { and } \quad v=-2 x y=c_{2}
$$

Level Curves of u and v

They are orthogonal to each other at every (x, y)

Level Curves of u and v

So why are the level curves orthogonal at intersection?

Answer

Directions of steepest change in u and v are respectively along,

$$
\nabla u=\left(\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}\right) \quad \text { and } \quad \nabla v=\left(\frac{\partial v}{\partial x}, \frac{\partial v}{\partial y}\right)
$$

Thus we need only the angle between these two directions! Using CR, I rewrite

$$
\nabla u=\left(\frac{\partial v}{\partial y},-\frac{\partial v}{\partial x}\right)
$$

Clearly, this is orthogonal to ∇v

