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Ideal Fluid Flows

They are paradigms of Laplace equations satisfying

Steady state:
∂

∂t
≡ 0

Zero viscosity, ν = 0

Incompressibility,
d

dt
ρ(r , t) = 0

Irrotationality, ∇× v = 0



Incompressibility

0 =
d

dt
ρ(r , t) . . . density is always conserved

=
∂ρ

∂t
+ (v ·∇)ρ

= −∇ · (ρv)︸ ︷︷ ︸
mass continuity

+(v ·∇)ρ

= −[ρ∇ · v + �����v · (∇ρ)] + �����(v ·∇)ρ

yielding the continuity equation for incompressible fluids

∇ · v = 0 =⇒ v = ∇×Ψ

Thus v is solenoidal — in analogy with magnetostatics. Setting
the vector potential Ψ = ψ(x , y)ẑ , gives us the 2D velocity

v =

(
∂ψ

∂y
,−∂ψ

∂x

)



Irrotationality

Such flows cannot rotate a particle about its own axis, implying

∇× v = 0 =⇒ v = ∇φ

The 2D velocity in terms of the scalar potential φ is therefore

v =

(
∂φ

∂x
,
∂φ

∂y

)
Next we show that φ and ψ completely describe the flow!



Ideal flow as a complex function

Did you notice that ψ and φ are harmonic?

From incompressibility, 0 = ∇ · v = ∇ · (∇φ) = ∇2φ

From irrotationality, 0 = ∇× v = ∇× (∇×Ψ) = −∇2ψẑ

Since v is unique, they also satisfy Cauchy-Riemann

∂φ

∂x
=
∂ψ

∂y

∂φ

∂y
= −∂ψ

∂x

Thus they are pieces of an analytic function

Ω(z) = φ(x , y) + i ψ(x , y)

whose derivative gives the local velocity

Ω′(z) =
∂φ

∂x
+ i

∂ψ

∂x
= vx − i vy



Level Curves of φ and ψ reveal the local flow

Take the ideal flow described by the function

Ω(z) = −z2 = y2 − x2 − i 2xy

Q: What is the direction of flow at •? A: Along the streamline!

ψ(x , y) = c1 . . . streamlines ‖ v
φ(x , y) = c2 . . . equipotential lines ⊥ v



Flow Past a Circular Obstacle

Water flowing past a circular obstacle of radius a. Streamlines are tracked by a dye.
Album of Fluid Motion, Milton Van Dyke



Experimental Observations

From the photograph, we notice the two boundary conditions

As r/a� 1, v ∼ v0x̂

As r/a→ 1, v ∼ vθθ̂

Big Question

Can the flow at boundary describe the flow everywhere else?

The answer is a delightful “YES”. We just need Ω(z) at the
boundary. Laplace equation then demands that this solution must
hold everywhere as it only admits a unique solution.



Complex function describing the flow

Lets guess the Ω(z) at the boundaries —

As r/a� 1, Ω(z) ∼ v0z

As r/a→ 1, Ω(z) ∼ φ(x , y)

where in the second limit, we have taken the streamline hugging
the surface of the obstacle as ψ = 0, without loss of generality.

The only function that satisfies the boundary condition is

Ω(z) = v0z + v0
a2

z

For eg., Ω(z) = v0z + v0
a3

z2
works at r/a� 1 but fails at r/a→ 1.



Sketching the streamlines

Since Ω(z) = φ+ iψ, the corresponding potentials become

φ = v0

(
r +

a2

r

)
cos θ ψ = v0

(
r − a2

r

)
sin θ

recovers the experimental flow pattern!



Velocity field

From the derivative

Ω′(z) = v0

(
1− a2

z2

)
= v0

(
1− a2e−2iθ

r2

)
= vx − i vy

we read the Cartesian components

vx = v0

(
1− a2 cos 2θ

r2

)
and vy = −v0

a2 sin 2θ

r2

which gives v ∼ v0x̂ as r/a� 1. In polar coordinates however,

v = ∇φ =
∂φ

∂r
r̂+

1

r

∂φ

∂θ
θ̂ = v0

(
1−a2

r2

)
cos θ r̂+v0

(
1+

a2

r2

)
sin θ θ̂

which gives v ∼ 2v0 sin θ θ̂ as r/a→ 1.



Food for thought

Q. Where are the stagnation points (v = 0) of the flow?
A. At r = a and θ = (0, π)

Q. Find the level curves of φ and ψ at r/a� 1
A. In this far field region—
Streamlines ψ ∼ v0y = constant, are lines parallel to x-axis.
Equipotentials φ ∼ v0x = constant, are lines parallel to y -axis.


