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Ideal Fluid Flows

They are paradigms of Laplace equations satisfying

0
teady state: — =
Seaysaeat 0

@ Zero viscosity, v =0

d
Incompressibility, ap(r, t)=0

Irrotationality, V x v =0



Incompressibility

0 = —p(r,t) ... density is always conserved

= =V-(pv) +(v-V)p
—_——
mass continuity

= Vv vATP + (T

yielding the continuity equation for incompressible fluids
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Thus v is solenoidal — in analogy with magnetostatics. Setting
the vector potential ¥ = v(x, y)Z, gives us the 2D velocity
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Irrotationality

Such flows cannot rotate a particle about its own axis, implying

Vov=0] = [v=v4|

The 2D velocity in terms of the scalar potential ¢ is therefore

_ (99 9¢
V= <8x’8y>

Next we show that ¢ and i completely describe the flow!




Ideal flow as a complex function

Did you notice that ¢ and ¢ are harmonic?

From incompressibility, 0=V .-v =V (V¢)= V3¢
From irrotationality, 0=Vxv=Vx(Vx®¥) =-V2

Since v is unique, they also satisfy Cauchy-Riemann
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Thus they are pieces of an analytic function

Q(2) = d(x,y) + i ¥(x,y)]

whose derivative gives the local velocity

0
Q'(z) = 8X+ o T




Level Curves of ¢ and v reveal the local flow

Take the ideal flow described by the function
Qz)=—-22=y?>— x> —i2xy

Q: What is the direction of flow at e? A: Along the streamline!
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Y(x,y)=c1 ...streamlines || v
¢(x,y) =c ...equipotential lines L v



Flow Past a Circular Obstacle

Water flowing past a circular obstacle of radius a. Streamlines are tracked by a dye.
Album of Fluid Motion, Milton Van Dyke



Experimental Observations

From the photograph, we notice the two boundary conditions
Asr/a>1, v~ ypX

Asr/a—1, v ~ vyl

Big Question

Can the flow at boundary describe the flow everywhere else?‘

The answer is a delightful “YES”. We just need Q(z) at the
boundary. Laplace equation then demands that this solution must
hold everywhere as it only admits a unique solution.



Complex function describing the flow

Lets guess the Q(z) at the boundaries —
Asr/a>1, Q(z)~ wz

Asr/a—1, Q(z)~ ¢(x,y)

where in the second limit, we have taken the streamline hugging
the surface of the obstacle as ¢ = 0, without loss of generality.

The only function that satisfies the boundary condition is

32

Q(z) = wz+ o

3
For eg., Q(z) = wz + voa—2 works at r/a > 1 but fails at r/a — 1.
z



Sketching the streamlines

Since Q(z) = ¢ + i1, the corresponding potentials become

2 2
¢:vo<r+ar)c059 1/):v0<r—ar>sin<9

¢=—-675 ¢=6.75

Vo=1,a=3

recovers the experimental flow pattern!



Velocity field

From the derivative

2 2 —2i0
a a‘e .
Q’(z):vo<122):vo<1 2 ):vxlvy

we read the Cartesian components

a2 cos 26 a% sin 26
Vx = Vo 1_7 and Vy:—VOT

which gives v ~ vpx as r/a>> 1. In polar coordinates however,

(9¢)A 10¢ 4 a2 R a%\ . A
v=V¢p= raea_ 0< r2) cos@H—vo(l—i—r2 sin g 0

which gives v ~ 2vg sin 6 0 as r/a — 1.



Food for thought

Q. Where are the stagnation points (v = 0) of the flow?
A. At r=aand 0 = (0,m)

Q. Find the level curves of ¢ and ¢ at r/a>1

A. In this far field region—

Streamlines v ~ vpy = constant, are lines parallel to x-axis.
Equipotentials ¢ ~ vgx = constant, are lines parallel to y-axis.



