Lecture 14: Ideal Fluid Flows

Ashwin Joy
Department of Physics, IIT Madras, Chennai - 600036

Ideal Fluid Flows

- They are paradigms of Laplace equations satisfying
- Steady state: $\frac{\partial}{\partial t} \equiv 0$
- Zero viscosity, $\nu=0$
- Incompressibility, $\frac{\mathrm{d}}{\mathrm{d} t} \rho(\boldsymbol{r}, t)=0$
- Irrotationality, $\boldsymbol{\nabla} \times \boldsymbol{v}=0$

Incompressibility

$$
\begin{aligned}
0 & =\frac{\mathrm{d}}{\mathrm{~d} t} \rho(\boldsymbol{r}, t) \quad \ldots \text { density is always conserved } \\
& =\frac{\partial \rho}{\partial t}+(\boldsymbol{v} \cdot \boldsymbol{\nabla}) \rho \\
& =\underbrace{-\boldsymbol{\nabla} \cdot(\rho \boldsymbol{v})}_{\text {mass continuity }}+(\boldsymbol{v} \cdot \boldsymbol{\nabla}) \rho \\
& =-[\rho \boldsymbol{\nabla} \cdot \boldsymbol{v}+\boldsymbol{v} \cdot(\nabla \rho)]+(\boldsymbol{v} \cdot \boldsymbol{\nabla}) \rho
\end{aligned}
$$

yielding the continuity equation for incompressible fluids

$$
\nabla \cdot v=0 \Longrightarrow v=\boldsymbol{\nabla} \times \Psi
$$

Thus \boldsymbol{v} is solenoidal - in analogy with magnetostatics. Setting the vector potential $\boldsymbol{\Psi}=\psi(x, y) \hat{\mathbf{z}}$, gives us the 2D velocity

$$
\boldsymbol{v}=\left(\frac{\partial \psi}{\partial y},-\frac{\partial \psi}{\partial x}\right)
$$

Irrotationality

Such flows cannot rotate a particle about its own axis, implying

$$
\boldsymbol{\nabla} \times \boldsymbol{v}=0 \Longrightarrow \boldsymbol{v}=\boldsymbol{\nabla} \phi
$$

The 2D velocity in terms of the scalar potential ϕ is therefore

$$
\boldsymbol{v}=\left(\frac{\partial \phi}{\partial x}, \frac{\partial \phi}{\partial y}\right)
$$

Next we show that ϕ and ψ completely describe the flow!

Ideal flow as a complex function

Did you notice that ψ and ϕ are harmonic?

$$
\begin{array}{ll}
\text { From incompressibility, } & 0=\boldsymbol{\nabla} \cdot \boldsymbol{v}=\nabla \cdot(\nabla \phi)=\nabla^{2} \phi \\
\text { From irrotationality, } & 0=\boldsymbol{\nabla} \times \boldsymbol{v}=\nabla \times(\nabla \times \boldsymbol{\Psi})=-\nabla^{2} \psi \hat{z}
\end{array}
$$

Since \boldsymbol{v} is unique, they also satisfy Cauchy-Riemann

$$
\frac{\partial \phi}{\partial x}=\frac{\partial \psi}{\partial y} \quad \frac{\partial \phi}{\partial y}=-\frac{\partial \psi}{\partial x}
$$

Thus they are pieces of an analytic function

$$
\Omega(z)=\phi(x, y)+i \psi(x, y)
$$

whose derivative gives the local velocity

$$
\Omega^{\prime}(z)=\frac{\partial \phi}{\partial x}+i \frac{\partial \psi}{\partial x}=v_{x}-i v_{y}
$$

Level Curves of ϕ and ψ reveal the local flow

Take the ideal flow described by the function

$$
\Omega(z)=-z^{2}=y^{2}-x^{2}-i 2 x y
$$

Q: What is the direction of flow at \bullet ?
A: Along the streamline!

$\begin{array}{ll}\psi(x, y)=c_{1} & \ldots \text { streamlines } \| \boldsymbol{v} \\ \phi(x, y)=c_{2} & \ldots \text { equipotential lines } \perp \boldsymbol{v}\end{array}$

Flow Past a Circular Obstacle

Water flowing past a circular obstacle of radius a. Streamlines are tracked by a dye. Album of Fluid Motion, Milton Van Dyke

Experimental Observations

From the photograph, we notice the two boundary conditions

$$
\begin{array}{ll}
\text { As } r / a \gg 1, & \boldsymbol{v} \sim v_{0} \hat{x} \\
\text { As } r / a \rightarrow 1, & \boldsymbol{v} \sim v_{\theta} \hat{\boldsymbol{\theta}}
\end{array}
$$

Big Question

Can the flow at boundary describe the flow everywhere else?
The answer is a delightful "YES". We just need $\Omega(z)$ at the boundary. Laplace equation then demands that this solution must hold everywhere as it only admits a unique solution.

Complex function describing the flow

Lets guess the $\Omega(z)$ at the boundaries -

$$
\begin{aligned}
& \text { As } r / a \gg 1, \quad \Omega(z) \sim v_{0} z \\
& \text { As } r / a \rightarrow 1, \quad \Omega(z) \sim \phi(x, y)
\end{aligned}
$$

where in the second limit, we have taken the streamline hugging the surface of the obstacle as $\psi=0$, without loss of generality.
The only function that satisfies the boundary condition is

$$
\Omega(z)=v_{0} z+v_{0} \frac{a^{2}}{z}
$$

For eg., $\Omega(z)=v_{0} z+v_{0} \frac{a^{3}}{z^{2}}$ works at $r / a \gg 1$ but fails at $r / a \rightarrow 1$.

Sketching the streamlines

Since $\Omega(z)=\phi+i \psi$, the corresponding potentials become

$$
\phi=v_{0}\left(r+\frac{a^{2}}{r}\right) \cos \theta \quad \psi=v_{0}\left(r-\frac{a^{2}}{r}\right) \sin \theta
$$

recovers the experimental flow pattern!

Velocity field

From the derivative

$$
\Omega^{\prime}(z)=v_{0}\left(1-\frac{a^{2}}{z^{2}}\right)=v_{0}\left(1-\frac{a^{2} e^{-2 i \theta}}{r^{2}}\right)=v_{x}-i v_{y}
$$

we read the Cartesian components

$$
v_{x}=v_{0}\left(1-\frac{a^{2} \cos 2 \theta}{r^{2}}\right) \quad \text { and } \quad v_{y}=-v_{0} \frac{a^{2} \sin 2 \theta}{r^{2}}
$$

which gives $\boldsymbol{v} \sim v_{0} \hat{\boldsymbol{x}}$ as $r / a \gg 1$. In polar coordinates however,
$\boldsymbol{v}=\boldsymbol{\nabla} \phi=\frac{\partial \phi}{\partial r} \hat{\boldsymbol{r}}+\frac{1}{r} \frac{\partial \phi}{\partial \theta} \hat{\boldsymbol{\theta}}=v_{0}\left(1-\frac{a^{2}}{r^{2}}\right) \cos \theta \hat{\boldsymbol{r}}+v_{0}\left(1+\frac{a^{2}}{r^{2}}\right) \sin \theta \hat{\boldsymbol{\theta}}$
which gives $\boldsymbol{v} \sim 2 v_{0} \sin \theta \hat{\boldsymbol{\theta}}$ as $r / a \rightarrow 1$.

Food for thought

Q. Where are the stagnation points $(\boldsymbol{v}=0)$ of the flow?
A. At $r=a$ and $\theta=(0, \pi)$
Q. Find the level curves of ϕ and ψ at $r / a \gg 1$
A. In this far field region-

Streamlines $\psi \sim v_{0} y=$ constant, are lines parallel to x-axis.
Equipotentials $\phi \sim v_{0} x=$ constant, are lines parallel to y-axis.

