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Multivalued Functions

Introduced as the inverse of single valued functions, eg.
zZ=w
Inverting above, yields the simplest multivalued function
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Closed loop away from origin outside returns w to its original value



Closed loop about origin does not return w to its original value
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z = 0 is therefore a branch point of w = /z
Another branch point is at z = co. Take z =1/t and verify!



w = y/z can be made single-valued by a branch cut

Procedure

Choose an axis joining the branch points z=10 and z = oo
There are infinite ways to pick z = oo, we choose along § =0
Cut this axis out including z = 0 and oo
Thus we have fixed the branch at n = 0 (principal)
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@ w is therefore single valued in this open plane



Complex Logarithm

The function
w=Inz=In|z|+i(0p+2n) ...n€Z
is infinitely valued! For eg.

In (—1) =In & CmD7 —j (2n 4+ 1)x

Logarithm of positive numbers is taken as single vaIued‘

Note that w = In z has branch points at z = 0 and co. Removing
any ray joining these two branch points, say the 4+ve x-axis is the

branch cut

that allows only n = 0 thereby making w single valued.



Handle with Care

Due to multivaluedness, the validity of

‘In (zizz) =In z1 +In 22‘

requires proper specification of branches. For eg., with z; = z» =i,

In (?)=1In(i-i)=21n (i)

m=0 : In(®?) =1In((e™?)?) =21In(e™?)=21In (i)
m=1 : In(i?) =1In((e®?)?)=21In (®/2) =21n (i)



Curious Case

Consider the vector field

YR+ xy

A= P
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Ex. water flowing down a sink or
a magnetic field due to a current
carrying wire through origin

Is this vector field conservative?

In what follows, we map this question to a complex variable
problem.



A represented by Q(z)

Notice that away from origin, A is both solenoidal and irrotational

V-A=0 = A=V xuyxy)z
VxA=0 = A=Vo¢(x,y)

The above definitions of A can be used to write

¢ = tan"l(y/x)+ C =arg (2)
v = —Inr=—In|z|

Thus, we have the complex function
Qz)=¢+ip=arg (z)—iln|z| = —iln(|z] €28 @)) = —iInz

which is single valued/analytic with a branch cut 0 < arg (z) < 27.



A is conservative in the cut plane

Clearly, on any closed path in the cut plane, we have
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A is therefore conservative in this cut plane, see figure below.
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Conformal Mapping

Laplace equation in complicated domains can be greatly simplified

Start with a complex potential
Q(z) = ¢(x,y) +i(x,y) analytic in some R € z plane
Transform to a new variable w = u + i v, via
z= F(w) analytic in some R’ € w plane
The transformed potential
Q(z(w)) = Q(w) analytic in same R’ € w plane
With complex velocity

dQ dQ2dz dQ /dw . dw 1
i il s ...|fd—z7é0wherew—F (2)



Conformal Mapping

If two curves intersect at a point zp, then their angle of intersection

d
is preserved by the mapping z = F(w) so long as d—w #£0
z|,



Worked Example

Compute the flow field of an ideal fluid with the complex potential

Qz) =22 =x>—y*+i2xy

Directly reading the potential ¢ = x? — y?
and streamfunction ¥ = 2xy , we sketch

»

Boundary streamline, ¢ =0 at 6 = 0,7/2
Velocity, v = 2(x, —y) and speed, |v| = 2r

The transformation, z = \/w gives
Qz(w))=w=u+iv

with potential u, and streamfunction v

Uniform straightline flow

v

Boundary streamline, v =0at § =0, 7
Velocity, v = (1,0) and speed, |v| =1
4 _ dddw _ 5,

For velocity in z-plane, §; = 35 55



