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Multivalued Functions

Introduced as the inverse of single valued functions, eg.

z = ω2

Inverting above, yields the simplest multivalued function

ω =
√
z =
√
r e iθp/2+inπ =

{√
r e iθp/2 (even n)

−
√
r e iθp/2 (odd n)

Closed loop away from origin outside returns ω to its original value



Branch Points

Closed loop about origin does not return ω to its original value

z = 0 is therefore a branch point of ω =
√
z

Another branch point is at z =∞. Take z = 1/t and verify!



Branch cuts

ω =
√
z can be made single-valued by a branch cut

Procedure

Choose an axis joining the branch points z = 0 and z =∞
There are infinite ways to pick z =∞, we choose along θ = 0

Cut this axis out including z = 0 and ∞
Thus we have fixed the branch at n = 0 (principal)

ω is therefore single valued in this open plane



Complex Logarithm

The function

ω = ln z = ln |z |+ i (θp + 2nπ) . . . n ∈ Z

is infinitely valued! For eg.

ln (−1) = ln e i (2n+1)π = i (2n + 1)π

Logarithm of positive numbers is taken as single valued

Note that ω = ln z has branch points at z = 0 and ∞. Removing
any ray joining these two branch points, say the +ve x-axis is the
branch cut

0 ≤ θp < 2π

that allows only n = 0 thereby making ω single valued.



Handle with Care

Due to multivaluedness, the validity of

ln (z1z2) = ln z1 + ln z2

requires proper specification of branches. For eg., with z1 = z2 = i ,

ln (i2) = ln (i · i) = 2 ln (i)

m = 0 : ln (i2) = ln ((e iπ/2)2) = 2 ln (e iπ/2) = 2 ln (i)

m = 1 : ln (i2) = ln ((e i5π/2)2) = 2 ln (e i5π/2) = 2 ln (i)

:



Curious Case

Consider the vector field

A =
θ̂

r
=
−y x̂ + xŷ

r2

Ex. water flowing down a sink or
a magnetic field due to a current
carrying wire through origin

Is this vector field conservative?

In what follows, we map this question to a complex variable
problem.



A represented by Ω(z)

Notice that away from origin, A is both solenoidal and irrotational

∇ · A = 0 =⇒ A = ∇× ψ(x , y)ẑ
∇× A = 0 =⇒ A = ∇φ(x , y)

The above definitions of A can be used to write

φ = tan−1(y/x) + C = arg (z)

ψ = −ln r = −ln |z |

Thus, we have the complex function

Ω(z) = φ+ iψ = arg (z)− i ln |z | = −i ln (|z | e i arg (z)) = −i ln z

which is single valued/analytic with a branch cut 0 ≤ arg (z) < 2π.



A is conservative in the cut plane

Clearly, on any closed path in the cut plane, we have∮
C

A · dl = 0

A is therefore conservative in this cut plane, see figure below.



Conformal Mapping

Laplace equation in complicated domains can be greatly simplified

Start with a complex potential

Ω(z) = φ(x , y) + i ψ(x , y) analytic in some R ∈ z plane

Transform to a new variable ω = u + i v , via

z ≡ F (ω) analytic in some R′ ∈ w plane

The transformed potential

Ω(z(ω)) ≡ Ω(ω) analytic in same R′ ∈ ω plane

With complex velocity

dΩ

dω
=

dΩ

dz

dz

dω
=

dΩ

dz

/
dω

dz
. . . if

dω

dz
6= 0 where ω = F−1(z)



Conformal Mapping

If two curves intersect at a point z0, then their angle of intersection

is preserved by the mapping z = F (ω) so long as
dω

dz

∣∣∣∣
z0

6= 0



Worked Example

Compute the flow field of an ideal fluid with the complex potential

Ω(z) = z2 = x2 − y2 + i 2xy

Directly reading the potential φ = x2 − y2

and streamfunction ψ = 2xy , we sketch

Boundary streamline, ψ = 0 at θ = 0, π/2
Velocity, v = 2(x ,−y) and speed, |v | = 2r

The transformation, z =
√
ω gives

Ω(z(w)) = ω = u + i v

with potential u, and streamfunction v

Uniform straightline flow

Boundary streamline, v = 0 at θ = 0, π
Velocity, v = (1, 0) and speed, |v | = 1

For velocity in z-plane, dΩ
dz

= dΩ
dω

dω
dz

= 2z


