Lecture 16: Integration - I

Ashwin Joy

Department of Physics, IIT Madras, Chennai - 600036

Revisiting Green's Theorem

Let u and v be analytic in some \mathcal{R} bounded by a simple curve \mathcal{C}

$$
\oint_{\mathcal{C}}(u \mathrm{~d} x+v \mathrm{~d} y)=\iint_{\mathcal{R}}\left(\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}\right) \mathrm{d} x \mathrm{~d} y
$$

\mathcal{C} is traversed counter-clockwise (positive orientation)

Proof

In the region we first work out

$$
\begin{aligned}
& -\iint_{\mathcal{R}} \frac{\partial u}{\partial y} \mathrm{~d} x \mathrm{~d} y \\
& =-\int_{x=a}^{x=b} \int_{y=g_{1}(x)}^{y=g_{2}(x)} \frac{\partial u}{\partial y} \mathrm{~d} y \mathrm{~d} x \\
& =-\int_{x=a}^{x=b}\left[u\left(x, g_{2}(x)\right)-u\left(x, g_{1}(x)\right)\right] \mathrm{d} x \\
& =\oint_{\mathcal{C}} u \mathrm{~d} x
\end{aligned}
$$

Green's Theorem

In the same region we now show

$$
\begin{aligned}
& \iint_{\mathcal{R}} \frac{\partial v}{\partial x} \mathrm{~d} x \mathrm{~d} y \\
= & \int_{y=c}^{y=d} \int_{x=g_{2}(y)}^{x=g_{1}(y)} \frac{\partial v}{\partial x} \mathrm{~d} x \mathrm{~d} y \\
= & \int_{y=c}^{y=d}\left[v\left(g_{1}(y), y\right)-v\left(g_{2}(y), y\right)\right] \mathrm{d} y \\
= & \oint_{\mathcal{C}} v d y
\end{aligned}
$$

Giving us the Green's theorem

$$
\oint_{\mathcal{C}}(u \mathrm{~d} x+v \mathrm{~d} y)=\iint_{\mathcal{R}}\left(\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}\right) \mathrm{d} x \mathrm{~d} y
$$

Cauchy's Theorem

If $f(z)$ is analytic in some region \mathcal{R} bounded by a simple curve \mathcal{C}

$$
\oint_{\mathcal{C}} f(z) \mathrm{d} z=0
$$

Proof

$$
\begin{align*}
\oint_{\mathcal{C}} f(z) \mathrm{d} z & =\oint_{\mathcal{C}}(u+i v)(\mathrm{d} x+i \mathrm{~d} y) \\
& =\oint_{\mathcal{C}}(u \mathrm{~d} x-v \mathrm{~d} y)+i \oint_{\mathcal{C}}(u \mathrm{~d} y+v \mathrm{~d} x) \\
& =\iint_{\mathcal{R}}\left[\left(\frac{\partial v}{\partial x}+\frac{\partial u}{\partial y}\right)+i\left(\frac{\partial v}{\partial y}-\frac{\partial u}{\partial x}\right)\right] \mathrm{d} x \mathrm{~d} y \quad \ldots \mathrm{GT} \\
& =0
\end{align*}
$$

Converse is True!

If $\oint_{\mathcal{C}} f(z) \mathrm{d} z=0$ and f is continuous everywhere inside \mathcal{C}, then f is also analytic inside \mathcal{C}.
——Proof left as exercise
Hint: Just use the fact that u, v must be continuous along with their partial derivatives for Green's theorem to apply.
Cauchy-Riemann conditions will naturally follow from there.

Simple Example

Evaluate $\mathcal{I}=\oint_{\mathcal{C}} z^{n} \mathrm{~d} z$ with $n \in \mathbb{Z}$

With $z=a e^{i \theta}$

$$
\mathcal{I}=\oint_{\mathcal{C}} z^{n} \mathrm{~d} z=\int_{0}^{2 \pi} a^{n+1} e^{i(n+1) \theta} i \mathrm{~d} \theta= \begin{cases}2 \pi i & (n=-1) \\ 0 & (n \neq-1)\end{cases}
$$

The answer is also independent of a !
Q. \mathcal{I} vanishes for $\frac{1}{z^{2}}, \frac{1}{z^{3}} \ldots$ These functions are not analytic in \mathcal{R} A. The converse of Cauchy theorem is not applicable as none of these functions are continuous at origin

Generalization

We could have taken the circle origin anywhere, say z_{0}. Then, the parametrization $z-z_{0}=a e^{i \theta}$ gives

$$
\oint_{\mathcal{C}}\left(z-z_{0}\right)^{n} \mathrm{~d} z=\oint_{\theta}^{2 \pi} a^{n} e^{i n \theta} a i e^{i \theta} \mathrm{~d} \theta= \begin{cases}2 \pi i & (n=-1) \\ 0 & (n \neq-1)\end{cases}
$$

As usual, the integral does not depend on the circle radius a.

Application in Electromagnetism

Evaluate the Fresnel integral (very hard by elementary method)

$$
\mathcal{I}=\int_{0}^{\infty} e^{i x^{2}} \mathbf{d x}
$$

By Cauchy theorem,

$$
\oint_{\mathcal{C}} e^{i z^{2}} \mathrm{~d} z=0
$$

gives the sum of three line integrals,

$$
\int_{0}^{a} e^{i x^{2}} \mathrm{~d} x+i \text { a } \int_{0}^{\pi / 4} e^{i a^{2} \cos 2 \theta} e^{-a^{2} \sin 2 \theta} e^{i \theta} \mathrm{~d} \theta+e^{i \pi / 4} \int_{a}^{0} e^{-r^{2}} \mathrm{~d} r=0
$$

In the limit $a \rightarrow \infty$

$$
\begin{gathered}
\mathcal{I}+e^{i \pi / 4} \int_{\infty}^{0} e^{-r^{2}} \mathrm{~d} r=0 \\
\mathcal{I}=e^{i \pi / 4} \sqrt{\pi} / 2
\end{gathered}
$$

Contour Deformation

How to evaluate $\oint_{\mathcal{C}} f(z) \mathrm{d} z$ with two singularities z_{0} and z_{1} inside?

Given

Cut and deform

Since $z_{0,1}$ are outside the deformed contour, Cauchy's formula gives

$$
\int_{\mathcal{C}^{\prime}}+\int_{\mathcal{L}_{2}}+\int_{\mathcal{L}_{1}}+\int_{\mathcal{C}_{0}}+\int_{\mathcal{C}^{\prime \prime}}+\int_{\mathcal{L}_{4}}+\int_{\mathcal{L}_{3}}+\int_{\mathcal{C}_{1}} f(z) \mathrm{d} z=0
$$

Stitching

In the limit $\epsilon \rightarrow 0$, we get

Two new circles with - ve orientation
and the integral reduces to

$$
\oint_{\mathcal{C}} f(z) \mathrm{d} z+\underbrace{\oint_{-\mathcal{C}_{1}} f(z) \mathrm{d} z+\oint_{-\mathcal{C}_{0}} f(z) \mathrm{d} z}_{\text {-ve orientation }}=0
$$

Put simply

$$
\oint_{\mathcal{C}} f(z) \mathrm{d} z=\oint_{\mathcal{C}_{1}} f(z) \mathrm{d} z+\oint_{\mathcal{C}_{0}} f(z) \mathrm{d} z
$$

Worked Example

Evaluate $\oint_{\mathcal{C}} \frac{e^{z^{2}}}{z^{2}} d z$ on some contour \mathcal{C} about the origin.
Solution: Clearly we cannot use the Cauchy's theorem as $e^{z^{2}} / z^{2}$ is not analytic at the origin. Below we apply the trick just learned

Deform some contour \mathcal{C}

to a circle about origin

$$
\oint_{\mathcal{C}} \frac{e^{z^{2}}}{z^{2}} \mathrm{~d} z=\oint_{\mathcal{C}_{0}} \frac{e^{z^{2}}}{z^{2}} \mathrm{~d} z=\oint_{\mathcal{C}_{0}}\left(\frac{1}{z^{2}}+1+\frac{z^{2}}{2!}+\ldots\right) \mathrm{d} z=0
$$

