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Recap

We learned to write a Laurent series for any f (z) about z0,

f (z) =
∞∑

n=−∞
Cn(z − z0)n, Cn =

1

2πi

∮
C

f (ξ)

(ξ − z0)n+1
dξ

The coefficient C−1 is called the residue as only this term will
contribute to a loop integral of f (z) about z0.

For f analytic at z0, Cn = 0 ∀ n < 0 —negative powers don’t exist.

Lets look at some more worked examples.



Problem 1

Expand f (z) =
1

1 + z2
in power series about z = 0︸ ︷︷ ︸

regular

and z = i︸ ︷︷ ︸
singular

about z = 0

construct a circle,
|z | = 1

For |z | < 1, we derive a Taylor series

f (z) =
1

1 + z2
=
∞∑
n=0

(−1)nz2n

For |z | > 1, we derive a Laurent series

f (z) =
1

z2

[
1

1 + (1/z)2

]
=
∞∑
n=0

(−1)n
1

z2n+2

C−1 = 0 . . . Residue



Problem 1

about z = i

construct two circles,
|z − i | = a (small)
|z − i | = 2 (large)

z = −i is a singularity

f (z) =
1

(z + i)(z − i)
can be written

(i) in the annular region, a < |z − i | < 2 as

f (z) =
1

(z − i)

1

2i(1 + z−i
2i )

=
∞∑
n=0

(−1)n
(z − i)n−1

(2i)n+1
. . .C−1 =

1

2i

(ii) in the region |z − i | > 2 as

f (z) =
1

(z − i)2
1

(1 + 2i
z−i )

=
∞∑
n=0

(−1)n
(2i)n

(z − i)n+2
. . .C−1 = 0



Problem 2

Expand the following function

f (z) =
z

(z − 2)(z + i)
about z = 0

For |z | < 1, we set up a Taylor expansion

f (z) =
1

(2 + i)

[
2

z − 2
+

i

z + i

]
=

1

(2 + i)

[
−1

1− z/2
+

1

1 + z/i

]
=

1

(2 + i)

∞∑
n=0

[
−
(
z

2

)n

+
(−1)nzn

in

]

=
1

(2 + i)

∞∑
n=0

(
z

2

)n[
(2i)n − 1

]



Problem 2

In the annular region, 1 < |z | < 2, we set up a Laurent expansion

f (z) =
1

(2 + i)

[
2

z − 2
+

i

z + i

]
=

1

(2 + i)

[
−1

1− z/2
+

i

z(1 + i/z)

]
=

1

(2 + i)

∞∑
n=0

[
−
(
z

2

)n

+ (−1)n
(
i

z

)n+1]
. . .C−1 =

i

2 + i

In the region |z | > 2, we set up a Laurent expansion

f (z) =
1

(2 + i)

[
2

z − 2
+

i

z + i

]
=

1

(2 + i)

[
2/z

(1− 2/z)
+

i/z

(1 + i/z)

]

=
1

(2 + i)

∞∑
n=0

[(
2

z

)n+1

+ (−1)n
(
i

z

)n+1]

=
1

(2 + i)

∞∑
n=0

2n+1 + (−1)nin+1

zn+1
. . .C−1 = 1



Laurent Series to Solve Loop Integrals

Laurent series about a singular point reveals the residue there

This can be exploited to compute contour integrals directly

We substantiate this argument with some examples next



Problem 3

Evaluate I =

∮
C

ez

z3
dz

ez is an entire, Taylor expanding it about z = 0

I =

∮
C

[
1

z3
+

1

z2
+

1

2!z︸︷︷︸
survives

+
1

3!
+ . . .

]
dz = πi

alternatively, from Cauchy’s differential formula

f n(z0) =
n!

2πi

∮
C

f (z)

(z − z0)n+1
dz =⇒ I =

2πi

2!

d2

dz2
ez
∣∣∣∣
z=0

= πi



Problem 4

Evaluate I =

∮
C
e1/z dz

e1/z has a singularity at z = 0

By mapping z = 1/u we can Taylor expand at z =∞ (u = 0)

eu = 1 + u +
u2

2!
+O(u3) = 1 +

1

z
+

1

2!z2
+O(1/z3)

This is a Laurent series with residue C−1 = 1 yielding

I = 2πi



Problem 5

Evaluate I =

∮
C

1

z2 sin z
dz

Note that
1

z2 sin z
has singularities at z = nπ with n ∈ Z

To compute I, we set up a Laurent series of

1

z3
z

sin z
=

1

z3
1

1− (z2/3! +O(z4)︸ ︷︷ ︸
common ratio

)
=

1

z3
(1 + z2/3! +O(z4))

which always converges inside C. The residue C−1 = 1/3! gives

I = πi/3



Singularities of Complex Functions

If a complex function can be written as

f (z) =
φ(z)

(z − z0)m

where m ∈ N+ and φ is analytic with φ(z0) 6= 0. Then f is said to
have an isolated singularity at z0 —characterized as a pole of order
m. For m = 1, the singularity is just referred to as a simple pole.



Strength of Singularities

Since φ(z) is Taylor expandable at z0, we rewrite the Laurent series

f (z) =
1

(z − z0)m

∞∑
n=0

1

n!
φn(z0)(z − z0)n =

∞∑
n=−m

Cn(z − z0)n

The coefficient of the greatest negative power C−m = φ(z0) is
defined as the strength of the mth order pole at z0.

The residue in such cases is C−1 =
1

(m − 1)!
φm−1(z0).

I will illustrate these concepts with a worked example next.



Example

Describe the singularities of the function

f (z) =
z2 − 2z + 1

z(z + 1)3

Solution

f (z) has a simple pole at z = 0 and a triple pole at z = −1

For the strength of simple pole at z = 0, we rewrite

f (z) =
φ(z)

z
to yield C−1 = φ(0) = 1

For the strength of triple pole at z = −1, we rewrite

f (z) =
φ(z)

(z + 1)3
to yield C−3 = φ(−1) = −4


