Lecture 19: Function Singularities

Ashwin Joy

Department of Physics, IIT Madras, Chennai - 600036

We learned to write a Laurent series for any $f(z)$ about z_{0},

$$
f(z)=\sum_{n=-\infty}^{\infty} C_{n}\left(z-z_{0}\right)^{n}, \quad C_{n}=\frac{1}{2 \pi i} \oint_{\mathcal{C}} \frac{f(\xi)}{\left(\xi-z_{0}\right)^{n+1}} \mathrm{~d} \xi
$$

The coefficient C_{-1} is called the residue as only this term will contribute to a loop integral of $f(z)$ about z_{0}.

For f analytic at $z_{0}, C_{n}=0 \forall n<0$-negative powers don't exist.
Lets look at some more worked examples.

Problem 1

Expand $f(z)=\frac{1}{1+z^{2}}$ in power series about $\underbrace{z=0}_{\text {regular }}$ and $\underbrace{z=i}_{\text {singular }}$
about $z=0$
construct a circle,

For $|z|<1$, we derive a Taylor series

$$
f(z)=\frac{1}{1+z^{2}}=\sum_{n=0}^{\infty}(-1)^{n} z^{2 n}
$$

For $|z|>1$, we derive a Laurent series

$$
\begin{aligned}
f(z) & =\frac{1}{z^{2}}\left[\frac{1}{1+(1 / z)^{2}}\right]=\sum_{n=0}^{\infty}(-1)^{n} \frac{1}{z^{2 n+2}} \\
C_{-1} & =0 \quad \ldots \text { Residue }
\end{aligned}
$$

Problem 1

about $z=i$
ruct two circles, construct two circles,
$|z-i|=a \quad$ (small) $|z-i|=2 \quad$ (large)

LS
$z=-i$ is a singularity

$$
f(z)=\frac{1}{(z+i)(z-i)} \text { can be written }
$$

(i) in the annular region, $a<|z-i|<2$ as

$$
\begin{aligned}
f(z) & =\frac{1}{(z-i)} \frac{1}{2 i\left(1+\frac{z-i}{2 i}\right)} \\
& =\sum_{n=0}^{\infty}(-1)^{n} \frac{(z-i)^{n-1}}{(2 i)^{n+1}} \quad \ldots C_{-1}=\frac{1}{2 i}
\end{aligned}
$$

(ii) in the region $|z-i|>2$ as

$$
\begin{aligned}
f(z) & =\frac{1}{(z-i)^{2}} \frac{1}{\left(1+\frac{2 i}{z-i}\right)} \\
& =\sum_{n=0}^{\infty}(-1)^{n} \frac{(2 i)^{n}}{(z-i)^{n+2}} \quad \ldots C_{-1}=0
\end{aligned}
$$

Problem 2

Expand the following function
$f(z)=\frac{z}{(z-2)(z+i)} \quad$ about $z=0$

For $|z|<1$, we set up a Taylor expansion

$$
\begin{aligned}
f(z)=\frac{1}{(2+i)}\left[\frac{2}{z-2}+\frac{i}{z+i}\right] & =\frac{1}{(2+i)}\left[\frac{-1}{1-z / 2}+\frac{1}{1+z / i}\right] \\
& =\frac{1}{(2+i)} \sum_{n=0}^{\infty}\left[-\left(\frac{z}{2}\right)^{n}+\frac{(-1)^{n} z^{n}}{i^{n}}\right] \\
& =\frac{1}{(2+i)} \sum_{n=0}^{\infty}\left(\frac{z}{2}\right)^{n}\left[(2 i)^{n}-1\right]
\end{aligned}
$$

Problem 2

In the annular region, $1<|z|<2$, we set up a Laurent expansion

$$
\begin{aligned}
f(z) & =\frac{1}{(2+i)}\left[\frac{2}{z-2}+\frac{i}{z+i}\right]=\frac{1}{(2+i)}\left[\frac{-1}{1-z / 2}+\frac{i}{z(1+i / z)}\right] \\
& =\frac{1}{(2+i)} \sum_{n=0}^{\infty}\left[-\left(\frac{z}{2}\right)^{n}+(-1)^{n}\left(\frac{i}{z}\right)^{n+1}\right] \quad \ldots C_{-1}=\frac{i}{2+i}
\end{aligned}
$$

In the region $|z|>2$, we set up a Laurent expansion

$$
\begin{array}{r}
f(z)=\frac{1}{(2+i)}\left[\frac{2}{z-2}+\frac{i}{z+i}\right]=\frac{1}{(2+i)}\left[\frac{2 / z}{(1-2 / z)}+\frac{i / z}{(1+i / z)}\right] \\
=\frac{1}{(2+i)} \sum_{n=0}^{\infty}\left[\left(\frac{2}{z}\right)^{n+1}+(-1)^{n}\left(\frac{i}{z}\right)^{n+1}\right] \\
=\frac{1}{(2+i)} \sum_{n=0}^{\infty} \frac{2^{n+1}+(-1)^{n} i^{n+1}}{z^{n+1}} \ldots C_{-1}=1
\end{array}
$$

Laurent Series to Solve Loop Integrals

- Laurent series about a singular point reveals the residue there
- This can be exploited to compute contour integrals directly
- We substantiate this argument with some examples next

Problem 3

Evaluate $\mathcal{I}=\oint_{\mathcal{C}} \frac{e^{z}}{z^{3}} d z$
e^{z} is an entire, Taylor expanding it about $z=0$

$$
\mathcal{I}=\oint_{\mathcal{C}}[\frac{1}{z^{3}}+\frac{1}{z^{2}}+\underbrace{\frac{1}{2!z}}_{\text {survives }}+\frac{1}{3!}+\ldots] \mathrm{d} z=\pi i
$$

alternatively, from Cauchy's differential formula

$$
f^{n}\left(z_{0}\right)=\frac{n!}{2 \pi i} \oint_{\mathcal{C}} \frac{f(z)}{\left(z-z_{0}\right)^{n+1}} \mathrm{~d} z \Longrightarrow \mathcal{I}=\left.\frac{2 \pi i}{2!} \frac{\mathrm{d}^{2}}{\mathrm{dz} z^{2}} e^{z}\right|_{z=0}=\pi i
$$

Problem 4

Evaluate $\mathcal{I}=\oint_{\mathcal{C}} e^{1 / z} d z$

$e^{1 / z}$ has a singularity at $z=0$
By mapping $z=1 / u$ we can Taylor expand at $z=\infty(u=0)$

$$
e^{u}=1+u+\frac{u^{2}}{2!}+\mathcal{O}\left(u^{3}\right)=1+\frac{1}{z}+\frac{1}{2!z^{2}}+\mathcal{O}\left(1 / z^{3}\right)
$$

This is a Laurent series with residue $C_{-1}=1$ yielding

$$
\mathcal{I}=2 \pi i
$$

Problem 5

Evaluate $\mathcal{I}=\oint_{\mathcal{C}} \frac{1}{z^{2} \sin z} d z$

Note that $\frac{1}{z^{2} \sin z}$ has singularities at $z=n \pi$ with $n \in \mathbb{Z}$
To compute \mathcal{I}, we set up a Laurent series of

$$
\frac{1}{z^{3}} \frac{z}{\sin z}=\frac{1}{z^{3}} \frac{1}{1-(\underbrace{z^{2} / 3!+\mathcal{O}\left(z^{4}\right)}_{\text {common ratio }})}=\frac{1}{z^{3}}\left(1+z^{2} / 3!+\mathcal{O}\left(z^{4}\right)\right)
$$

which always converges inside \mathcal{C}. The residue $C_{-1}=1 / 3$! gives

$$
\mathcal{I}=\pi i / 3
$$

Singularities of Complex Functions

If a complex function can be written as

$$
f(z)=\frac{\phi(z)}{\left(z-z_{0}\right)^{m}}
$$

where $m \in \mathbb{N}^{+}$and ϕ is analytic with $\phi\left(z_{0}\right) \neq 0$. Then f is said to have an isolated singularity at z_{0}-characterized as a pole of order m. For $m=1$, the singularity is just referred to as a simple pole.

Strength of Singularities

Since $\phi(z)$ is Taylor expandable at z_{0}, we rewrite the Laurent series

$$
f(z)=\frac{1}{\left(z-z_{0}\right)^{m}} \sum_{n=0}^{\infty} \frac{1}{n!} \phi^{n}\left(z_{0}\right)\left(z-z_{0}\right)^{n}=\sum_{n=-m}^{\infty} C_{n}\left(z-z_{0}\right)^{n}
$$

The coefficient of the greatest negative power $C_{-m}=\phi\left(z_{0}\right)$ is defined as the strength of the $m^{\text {th }}$ order pole at z_{0}.
The residue in such cases is $C_{-1}=\frac{1}{(m-1)!} \phi^{m-1}\left(z_{0}\right)$.
I will illustrate these concepts with a worked example next.

Example

Describe the singularities of the function

$$
f(z)=\frac{z^{2}-2 z+1}{z(z+1)^{3}}
$$

Solution

$f(z)$ has a simple pole at $z=0$ and a triple pole at $z=-1$
For the strength of simple pole at $z=0$, we rewrite

$$
f(z)=\frac{\phi(z)}{z} \quad \text { to yield } C_{-1}=\phi(0)=1
$$

For the strength of triple pole at $z=-1$, we rewrite

$$
f(z)=\frac{\phi(z)}{(z+1)^{3}} \quad \text { to yield } C_{-3}=\phi(-1)=-4
$$

