Lecture 20: Residue Theorem

Ashwin Joy

Department of Physics, IIT Madras, Chennai - 600036

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Let f(z) be a function with an isolated singularity z_0 inside some C

Thus, loop integrals become very easy if we have the Laurent series

Including a finite number of isolated singularities inside $\ensuremath{\mathcal{C}}$

 $\oint_{\mathcal{C}} f(z) \, \mathrm{d} z = ?$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

By making cuts of width ϵ , we form a new closed contour \mathcal{C}'

 $\oint_{\mathcal{C}'} f(z) \, \mathrm{d} z = 0$

As all singularities are outside \mathcal{C}^\prime

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Stitch & Close

▲□▶▲□▶▲□▶▲□▶ ▲□▶ ■ のへの

Evaluate
$$\mathcal{I} = \frac{1}{2\pi i} \oint_{\mathcal{C}} z \ e^{1/z} \ dz$$
, where \mathcal{C} is the circle $|z| = 1$
Solution

 $z e^{1/z}$ is singular at z = 0 with a Laurent expansion nearby

$$z e^{1/z} = z + 1 + \frac{1}{2!z} + \frac{1}{3!z^2} + \dots$$

with all negative powers of z. Thus z = 0 is an essential singularity Reading the residue as $C_{-1} = 1/2$, the integral becomes

$$\mathcal{I}=\mathcal{C}_{-1}=1/2$$

Worked Examples

Evaluate
$$\mathcal{I} = \oint_{\mathcal{C}} \frac{z+2}{z(z+1)} \, dz$$
, where \mathcal{C} is the circle $|z| = 2$
Solution

Noting the two simple poles, namely at z = (0, -1) we rewrite

$$\frac{z+2}{z(z+1)} = \frac{2}{z} - \frac{1}{z+1}$$

At $z = 0$, only $\frac{2}{z}$ will leave a residue $= 2$
At $z = -1$, only $\frac{-1}{z+1}$ will leave a residue $= -1$
Thus the integral is

$$\mathcal{I}=2\pi i \ (2-1)=2\pi i$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Worked Example

Evaluate
$$\mathcal{I} = \frac{1}{2\pi i} \oint_{\mathcal{C}} \frac{3z+1}{z(z-1)^3} dz$$
, where \mathcal{C} is the circle $|z| = 2$
Solution

Two singularities, a simple pole at z = 0 and a triple pole at z = 1Recalling that the residue due to the m^{th} order pole at z_0 is

$$C_{-1} = \frac{1}{(m-1)!} \phi^{(m-1)}(z_0)$$

Residue at
$$z = 0$$
, is $\left[\frac{3z+1}{(z-1)^3}\right]_{z=0} = -1$

Residue at
$$z = 1$$
, is $\frac{1}{2!} \frac{d^2}{dz^2} \left[\frac{3z+1}{z} \right]_{z=1} = 1$

The integral

$$\mathcal{I}=-1+1=0$$

Evaluate $\mathcal{I} = \frac{1}{2\pi i} \oint_{\mathcal{C}} \cot z \, dz$, where \mathcal{C} is the circle |z| = 1 **Solution** The function $\cot z$ has singularities at $z = n\pi$ with $n \in \mathbb{Z}$ Inside the circle \mathcal{C} , we only have simple pole z = 0 (below)

$$\cot z = \frac{\cos z}{\sin z} = \frac{1}{z} \frac{\cos z}{\sin z/z} = \frac{\phi(z)}{z}$$

with $\phi(z)$ analytic inside ${\mathcal C}$ and $\phi(0)=1\neq 0$

The residue at the simple pole z = 0 is $\phi(0) = 1$ and the integral

$$\mathcal{I} = 1$$

Evaluate

$$\mathcal{I} = rac{1}{2\pi i} \oint_{\mathcal{C}} rac{\phi(z)}{(az-z_0)} \, \mathsf{d}z \quad a \in \mathbb{R}$$

 $\phi(z)$ is analytic inside ${\cal C}$ that encloses z_0/a , with $\phi(z_0/a)
eq 0$

Solution

For the simple pole at $z = z_0/a$, we rewrite

$$rac{\phi(z)}{(az-z_0)}=rac{\phi(z)}{a(z-z_0/a)}$$

that leaves the residue,

$$C_{-1} = \frac{\phi(z_0/a)}{a} = \mathcal{I}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Worked Example

Obtain
$$\mathcal{I} = \frac{1}{2\pi i} \oint_{\mathcal{C}} \frac{z+1}{2z^3 - 3z^2 - 2z} \, dz$$
, with \mathcal{C} as the circle $|z| = 1$
Solution
We rewrite

 $\frac{z+1}{2z^3-3z^2-2z} = \frac{z+1}{2z(z-2)(z+1/2)}$

and read z = 0, 2, -1/2 as the three simple poles of this function

We will discount the pole at 2 as it is outside $\ensuremath{\mathcal{C}}$

Residue at
$$z = 0$$
 is $\left[\frac{z+1}{2(z-2)(z+1/2)}\right]_{z=0} = -\frac{1}{2}$
Residue at $z = -\frac{1}{2}$ is $\left[\frac{z+1}{2z(z-2)}\right]_{z=-1/2} = \frac{1}{5}$
 $\mathcal{I} = \frac{-1}{2} + \frac{1}{5} = \frac{-3}{10}$