Lecture 20: Residue Theorem

Ashwin Joy
Department of Physics, IIT Madras, Chennai - 600036

Cauchy's Residue Theorem

Let $f(z)$ be a function with an isolated singularity z_{0} inside some \mathcal{C} On the contour \mathcal{C}, we can write

$$
f(z)=\sum_{n=-\infty}^{\infty} C_{n}\left(z-z_{0}\right)^{n}
$$

From which the integral

$$
\oint_{\mathcal{C}} f(z) \mathrm{d} z=2 \pi i C_{-1}
$$

Thus, loop integrals become very easy if we have the Laurent series

Generalization

Including a finite number of isolated singularities inside \mathcal{C}

$$
\oint_{\mathcal{C}} f(z) \mathrm{d} z=?
$$

Contour Deformation

By making cuts of width ϵ, we form a new closed contour \mathcal{C}^{\prime}

$$
\oint_{\mathcal{C}^{\prime}} f(z) \mathrm{d} z=0
$$

As all singularities are outside \mathcal{C}^{\prime}

Stitch \& Close

$\oint_{\mathcal{C}} f(z) \mathrm{d} z+\underbrace{\oint_{-\mathcal{C}_{0}} f(z) \mathrm{d} z+\oint_{-\mathcal{C}_{1}} f(z) \mathrm{d} z+\ldots \oint_{-\mathcal{C}_{N}} f(z) \mathrm{d} z}_{\text {negatively oriented }}=0$

$$
\oint_{\mathcal{C}} f(z) \mathrm{d} z=\oint_{\mathcal{C}_{0}} f(z) \mathrm{d} z+\oint_{\mathcal{C}_{1}} f(z) \mathrm{d} z+\ldots \oint_{\mathcal{C}_{N}} f(z) \mathrm{d} z=2 \pi i \sum_{j=0}^{N} \mathrm{res}_{j}
$$

Worked Examples

Evaluate $\mathcal{I}=\frac{1}{2 \pi i} \oint_{\mathcal{C}} z e^{1 / z} \mathrm{dz}$, where \mathcal{C} is the circle $|z|=1$

Solution

$z e^{1 / z}$ is singular at $z=0$ with a Laurent expansion nearby

$$
z e^{1 / z}=z+1+\frac{1}{2!z}+\frac{1}{3!z^{2}}+\ldots
$$

with all negative powers of z. Thus $z=0$ is an essential singularity
Reading the residue as $C_{-1}=1 / 2$, the integral becomes

$$
\mathcal{I}=C_{-1}=1 / 2
$$

Worked Examples

Evaluate $\mathcal{I}=\oint_{\mathcal{C}} \frac{z+2}{z(z+1)} \mathrm{d} z$, where \mathcal{C} is the circle $|z|=2$
Solution

Noting the two simple poles, namely at $z=(0,-1)$ we rewrite

$$
\frac{z+2}{z(z+1)}=\frac{2}{z}-\frac{1}{z+1}
$$

At $z=0$, only $\frac{2}{z}$ will leave a residue $=2$
At $z=-1$, only $\frac{-1}{z+1}$ will leave a residue $=-1$
Thus the integral is

$$
\mathcal{I}=2 \pi i(2-1)=2 \pi i
$$

Worked Example

Evaluate $\mathcal{I}=\frac{1}{2 \pi i} \oint_{\mathcal{C}} \frac{3 z+1}{z(z-1)^{3}} \mathrm{~d} z$, where \mathcal{C} is the circle $|z|=2$

Solution

Two singularities, a simple pole at $z=0$ and a triple pole at $z=1$
Recalling that the residue due to the $m^{\text {th }}$ order pole at z_{0} is

$$
C_{-1}=\frac{1}{(m-1)!} \phi^{(m-1)}\left(z_{0}\right)
$$

Residue at $z=0$, is $\left[\frac{3 z+1}{(z-1)^{3}}\right]_{z=0}=-1$
Residue at $z=1$, is $\frac{1}{2!} \frac{\mathrm{d}^{2}}{\mathrm{~d} z^{2}}\left[\frac{3 z+1}{z}\right]_{z=1}=1$
The integral

$$
\mathcal{I}=-1+1=0
$$

Worked Example

Evaluate $\mathcal{I}=\frac{1}{2 \pi i} \oint_{\mathcal{C}} \cot z \mathrm{~d} z$, where \mathcal{C} is the circle $|z|=1$

Solution

The function cot z has singularities at $z=n \pi$ with $n \in \mathbb{Z}$ Inside the circle \mathcal{C}, we only have simple pole $z=0$ (below)

$$
\cot z=\frac{\cos z}{\sin z}=\frac{1}{z} \frac{\cos z}{\sin z / z}=\frac{\phi(z)}{z}
$$

with $\phi(z)$ analytic inside \mathcal{C} and $\phi(0)=1 \neq 0$
The residue at the simple pole $z=0$ is $\phi(0)=1$ and the integral

$$
\mathcal{I}=1
$$

Worked Example

Evaluate

$$
\mathcal{I}=\frac{1}{2 \pi i} \oint_{\mathcal{C}} \frac{\phi(z)}{\left(a z-z_{0}\right)} \mathrm{d} z \quad a \in \mathbb{R}
$$

$\phi(z)$ is analytic inside \mathcal{C} that encloses z_{0} / a, with $\phi\left(z_{0} / a\right) \neq 0$

Solution

For the simple pole at $z=z_{0} / a$, we rewrite

$$
\frac{\phi(z)}{\left(a z-z_{0}\right)}=\frac{\phi(z)}{a\left(z-z_{0} / a\right)}
$$

that leaves the residue,

$$
C_{-1}=\frac{\phi\left(z_{0} / a\right)}{a}=\mathcal{I}
$$

Worked Example

Obtain $\mathcal{I}=\frac{1}{2 \pi i} \oint_{\mathcal{C}} \frac{z+1}{2 z^{3}-3 z^{2}-2 z} \mathrm{~d} z$, with \mathcal{C} as the circle $|z|=1$

Solution

We rewrite

$$
\frac{z+1}{2 z^{3}-3 z^{2}-2 z}=\frac{z+1}{2 z(z-2)(z+1 / 2)}
$$

and read $z=0,2,-1 / 2$ as the three simple poles of this function
We will discount the pole at 2 as it is outside \mathcal{C}
Residue at $z=0$ is $\left[\frac{z+1}{2(z-2)(z+1 / 2)}\right]_{z=0}=-\frac{1}{2}$
Residue at $z=-\frac{1}{2}$ is $\left[\frac{z+1}{2 z(z-2)}\right]_{z=-1 / 2}=\frac{1}{5}$

$$
\mathcal{I}=\frac{-1}{2}+\frac{1}{5}=\frac{-3}{10}
$$

