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Fourier Series

Applications in

@ Electrical engineering
@ Vibration analysis
@ Acoustics, Optics & Signal Processing

@ Quantum Mechanics (particle in a box)



Formalism

Consider a periodic function f(0) with —7 <60 <7

One can write an expansion for
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Fourier Series

The coefficients can be recovered as
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from the orthogonality of the basis functions cos nfl and sin nf



Symmetry Arguments

Symmetry of f(#) will dictate the form of the Fourier expansion
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Symmetry Arguments

even f symmetric about 7/2

sines disappear, B, =0
odd cosines disappear, Azpt1 =0
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More interesting cases can emerge! Let your imaginations roll



Worked Example

Derive the Fourier series for the function

1 0
£(6) = + O<b<m
-1 T<0<27

Solution
S1: f is an odd function, so all cosines disappear (A, = 0)

S$2: f is symmetric about 7/2, so even sines disappear (B2, = 0)

Evaluating B, for odd n,
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B,=— f(0) sin nf do = — sin nf df— sin nf df| =
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Thus yielding the Fourier series
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Possible Application

One can derive convergent sum for an infinite series. For eg. in

T 3+5

f(0) = 4<sin 0+ sin 30, sin 50 +)

putting 0 = 7/2 gives
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infinite series



Discontinuities in f(6)

Fourier series does'nt converge at the discontinuities of f(6)
-Gibbs Phenomenon
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At 0 = nm, FS does'nt converge to f even as N — oo !



Worked Example

Work out the Fourier series for the function

f(0) =cos kO (—m<6<m) keR

Solution

S1: Clearly () is even, so only cosine terms present i.e B, =0
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yielding the Fourier series
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Derive and sketch the function f(0) whose Fourier series is given as
cos 30 n cos 50 n
9 25 o

Solution
S1: f must be an even function

cos 6 +

$2: f must be anti-symmetric at 7/2: f(7/2+0) = —f(7w/2 —0)
From S1, we work out for odd n
2 [T 2 (7
A,,—/ f(0) cos nf dg = —— [ () sin nf d =
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Possible with f'(6) = —%, giving f(0) = —%9 +B (0<6<m)

The constant B can be fixed from S2,
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Sketching f(0)
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Look at the N- partial sums /\ N
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FS converges everywhere quickly to f. “No Gibbs phenomenon”



Application in Convergent Sums

For any 6 € [—m, 7], we can compute a convergent sum

For eg., plugging 8 = 0, we get
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