Lecture 22: Fourier Series

Ashwin Joy
Teaching Assistant: Sanjay CP

Department of Physics, IIT Madras, Chennai - 600036

Fourier Series

Applications in

- Electrical engineering
- Vibration analysis
- Acoustics, Optics \& Signal Processing
- Quantum Mechanics (particle in a box)

Formalism

Consider a periodic function $f(\theta)$ with $-\pi \leq \theta<\pi$
One can write an expansion for

$$
f(\theta)=\underbrace{\frac{A_{0}}{2}+\sum_{n=1}^{\infty}\left(A_{n} \cos n \theta+B_{n} \sin n \theta\right)}_{\text {Fourier Series }}
$$

The coefficients can be recovered as

$$
\begin{aligned}
A_{m} & =\frac{1}{\pi} \int_{-\pi}^{\pi} f(\theta) \cos m \theta \mathrm{~d} \theta \\
B_{m} & =\frac{1}{\pi} \int_{-\pi}^{\pi} f(\theta) \sin m \theta \mathrm{~d} \theta
\end{aligned}
$$

from the orthogonality of the basis functions $\cos n \theta$ and $\sin n \theta$

Symmetry Arguments

Symmetry of $f(\theta)$ will dictate the form of the Fourier expansion

Symmetry Arguments

even f symmetric about $\pi / 2$

sines disappear, $B_{n}=0$ odd cosines disappear, $A_{2 n+1}=0$

$$
f(\theta)=\frac{A_{0}}{2}+\sum_{n=1}^{\infty} A_{2 n} \cos 2 n \theta
$$

More interesting cases can emerge! Let your imaginations roll

Worked Example

Derive the Fourier series for the function

$$
f(\theta)= \begin{cases}+1 & 0<\theta<\pi \\ -1 & \pi<\theta<2 \pi\end{cases}
$$

Solution

S1: f is an odd function, so all cosines disappear $\left(A_{n}=0\right)$
S2: f is symmetric about $\pi / 2$, so even sines disappear $\left(B_{2 n}=0\right)$
Evaluating B_{n} for odd n,
$B_{n}=\frac{1}{\pi} \int_{0}^{2 \pi} f(\theta) \sin n \theta \mathrm{~d} \theta=\frac{1}{\pi}\left[\int_{0}^{\pi} \sin n \theta \mathrm{~d} \theta-\int_{\pi}^{2 \pi} \sin n \theta \mathrm{~d} \theta\right]=\frac{4}{n \pi}$
Thus yielding the Fourier series

$$
f(\theta)=\frac{4}{\pi}\left(\sin \theta+\frac{\sin 3 \theta}{3}+\frac{\sin 5 \theta}{5}+\ldots\right)
$$

Possible Application

One can derive convergent sum for an infinite series. For eg. in

$$
f(\theta)=\frac{4}{\pi}\left(\sin \theta+\frac{\sin 3 \theta}{3}+\frac{\sin 5 \theta}{5}+\ldots\right)
$$

putting $\theta=\pi / 2$ gives

$$
\frac{\pi}{4}=\underbrace{1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\ldots}_{\text {infinite series }}
$$

Discontinuities in $f(\theta)$

Fourier series does'nt converge at the discontinuities of $f(\theta)$
-Gibbs Phenomenon

Look at the N - partial sums
$f(\theta)=\lim _{N \rightarrow \infty} \sum_{n=1}^{N} \frac{4}{\pi} \frac{\sin (2 n-1) \theta}{2 n-1}$

At $\theta=n \pi$, FS does'nt converge to f even as $N \rightarrow \infty$!

Worked Example

Work out the Fourier series for the function

$$
f(\theta)=\cos k \theta \quad(-\pi<\theta<\pi) \quad k \in \mathbb{R}
$$

Solution

S1: Clearly $f(\theta)$ is even, so only cosine terms present i.e $B_{n}=0$

$$
\begin{array}{r}
A_{n}=\frac{2}{\pi} \int_{0}^{\pi} \cos k \theta \cos n \theta \mathrm{~d} \theta=\frac{1}{\pi} \int_{0}^{\pi}[\cos (k+n) \theta+\cos (k-n) \theta] \mathrm{d} \theta \\
\quad=\frac{1}{\pi}\left(\left.\frac{\sin (k+n) \theta}{k+n}\right|_{0} ^{\pi}+\left.\frac{\sin (k-n) \theta}{k-n}\right|_{0} ^{\pi}\right)=\frac{(-1)^{n} 2 k \sin k \pi}{\pi\left(k^{2}-n^{2}\right)}
\end{array}
$$

yielding the Fourier series

$$
\cos k \theta=\frac{2 k \sin k \pi}{\pi}\left(\frac{1}{2 k^{2}}-\frac{\cos \theta}{k^{2}-1}+\frac{\cos 2 \theta}{k^{2}-4}-\ldots\right)
$$

Problem

Derive and sketch the function $f(\theta)$ whose Fourier series is given as

$$
\cos \theta+\frac{\cos 3 \theta}{9}+\frac{\cos 5 \theta}{25}+\ldots
$$

S1: f must be an even function
S2: f must be anti-symmetric at $\pi / 2: f(\pi / 2+\theta)=-f(\pi / 2-\theta)$
From S1, we work out for odd n

$$
A_{n}=\frac{2}{\pi} \int_{0}^{\pi} f(\theta) \cos n \theta \mathrm{~d} \theta=-\frac{2}{\pi n} \int_{0}^{\pi} f^{\prime}(\theta) \sin n \theta \mathrm{~d} \theta=\frac{1}{n^{2}}
$$

Possible with $f^{\prime}(\theta)=-\frac{\pi}{4}$, giving $f(\theta)=-\frac{\pi}{4} \theta+B \quad(0 \leq \theta<\pi)$
The constant B can be fixed from S2,

$$
-\frac{\pi}{4}\left(\frac{\pi}{2}+\theta\right)+B=\frac{\pi}{4}\left(\frac{\pi}{2}-\theta\right)-B \Longrightarrow B=\frac{\pi^{2}}{8}
$$

Sketching $f(\theta)$

$$
f(\theta)= \begin{cases}-\pi \theta / 4+\pi^{2} / 8, & 0 \leq \theta<\pi \\ \pi \theta / 4+\pi^{2} / 8, & -\pi \leq \theta<0\end{cases}
$$

Look at the N - partial sums

$$
f(\theta)=\lim _{N \rightarrow \infty} \sum_{n=1}^{N} \frac{\cos (2 n-1) \theta}{(2 n-1)^{2}}
$$

FS converges everywhere quickly to f. "No Gibbs phenomenon"

Application in Convergent Sums

For any $\theta \in[-\pi, \pi]$, we can compute a convergent sum
For eg., plugging $\theta=0$, we get

$$
\frac{\pi^{2}}{8}=1+\frac{1}{9}+\frac{1}{25}+\ldots
$$

