Lecture 23: Generalizing Fourier Series

Ashwin Joy Teaching Assistant: Sanjay CP

Department of Physics, IIT Madras, Chennai - 600036

Extension to Arbitrary Periods

- Fourier series can be used to represent any *L*-periodic function
- This is done by letting

$$x = \frac{\theta L}{2\pi}$$

- The interval of 2π in θ becomes an interval of L in x
- The formulas for Fourier series become

$$f(x) = \frac{A_0}{2} + \sum_{n=1}^{\infty} \left(A_n \cos \frac{2\pi nx}{L} + B_n \sin \frac{2\pi nx}{L} \right)$$

with

$$A_m = \frac{2}{L} \int_0^L f(x) \cos \frac{2\pi mx}{L} dx$$
$$B_m = \frac{2}{L} \int_0^L f(x) \sin \frac{2\pi mx}{L} dx$$

Complex Notation

By using the Euler representation

$$e^{i2\pi nx/L} = \cos\frac{2\pi nx}{L} + i\sin\frac{2\pi nx}{L}$$

We can rewrite our Fourier series in the complex form

$$f(x) = \sum_{n=-\infty}^{\infty} a_n e^{i2\pi nx/L}$$

To get a_m , we multiply by $e^{-i2\pi mx/L}$ and integrate from 0 to L

$$\frac{1}{L} \int_0^L f(x) e^{-i2\pi mx/L} dx = \sum_{n=-\infty}^{\infty} a_n \underbrace{\left(\frac{1}{L} \int_0^L e^{i2\pi (n-m)x/L} dx\right)}_{\delta_{nm}} = a_m$$

Average Absolute Square

Very useful in physics applications, and is obtained as

$$\frac{1}{L} \int_0^L |f(x)|^2 dx = \frac{1}{L} \int_0^L \left(\sum_{n=-\infty}^\infty a_n e^{i2\pi nx/L} \right) \left(\sum_{m=-\infty}^\infty a_m^* e^{-i2\pi mx/L} \right) dx$$

$$= \sum_{n=-\infty}^\infty \sum_{m=-\infty}^\infty a_n a_m^* \underbrace{\left(\frac{1}{L} \int_0^L e^{i2\pi (n-m)x/L} dx \right)}_{\delta_{nm}}$$

yielding,

$$\boxed{\frac{1}{L} \int_0^L |f(x)|^2 dx = \sum_{n=-\infty}^{\infty} |a_n|^2}$$

"Each Fourier mode contributes independently to the integral"

Fourier Transforms

We begin with our Fourier series for *L*-periodic function

$$f(x) = \sum_{n=-\infty}^{\infty} a_n e^{i2\pi nx/L}$$
 $a_n = \frac{1}{L} \int_{-L/2}^{L/2} f(x) e^{-i2\pi nx/L} dx$

As $L \to \infty$, f becomes aperiodic and is defined on the full x-axis

The sum is converted to an integral by defining,

$$\frac{2\pi n}{L} = k \quad \text{and} \quad a_n = \frac{\tilde{f}(k)}{L}$$

Since n increases in steps of unity

$$f(x) = \sum_{n=-\infty}^{\infty} a_n e^{i2\pi nx/L} = \int_{-\infty}^{\infty} a_n e^{i2\pi nx/L} dn = \frac{1}{2\pi} \int_{-\infty}^{\infty} \tilde{f}(k) e^{ikx} dk$$

Transform Pairs

Put simply

$$f(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \tilde{f}(k) e^{ikx} dk \qquad \tilde{f}(k) = \int_{-\infty}^{\infty} f(x) e^{-ikx} dx$$

is the Fourier transform pair. The position of $\frac{1}{2\pi}$ is also arbitrary

One can use a symmetric form also

$$f(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \tilde{f}(k) e^{ikx} dk \qquad \tilde{f}(k) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x) e^{-ikx} dx$$

Replacing $i \rightarrow -i$ in the above does not affect the transform

The Dirac δ -distribution

Fourier transforms provide an integral representation of $\delta(x)$

From the definition of transforms

$$f(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \tilde{f}(k) e^{ikx} dk$$

$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x') e^{-ikx'} dx' e^{ikx} dk$$

$$= \int_{-\infty}^{\infty} f(x') \underbrace{\frac{1}{2\pi} \int_{-\infty}^{\infty} e^{ik(x-x')} dk}_{?} dx'$$

$$= \int_{-\infty}^{\infty} f(x') \delta(x-x') dx' \dots definition of \delta(x)$$
Thus,
$$\delta(x-x') = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{ik(x-x')} dk$$

Parseval's theorem

Absolute square integral of f remains invariant in x- and k-space

$$\int_{-\infty}^{\infty} |f(x)|^2 dx = \frac{1}{2\pi} \int_{-\infty}^{\infty} |\tilde{f}(k)|^2 dk$$

Proof

$$\int_{-\infty}^{\infty} |f(x)|^{2} dx = \int_{-\infty}^{\infty} \underbrace{\frac{1}{2\pi} \int_{-\infty}^{\infty} \tilde{f}(k) e^{ikx} dk}_{f(x)} \underbrace{\frac{1}{2\pi} \int_{-\infty}^{\infty} \tilde{f}^{*}(k') e^{-ik'x} dk'}_{f^{*}(x)} dx$$

$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} \tilde{f}(k) \int_{-\infty}^{\infty} \tilde{f}^{*}(k') \left(\frac{1}{2\pi} \int_{-\infty}^{\infty} e^{i(k-k')x} dx\right) dk' dk$$

$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} \tilde{f}(k) \underbrace{\int_{-\infty}^{\infty} \tilde{f}^{*}(k') \delta(k-k') dk'}_{?} dk$$

$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} \tilde{f}(k) \tilde{f}^{*}(k) dk = \frac{1}{2\pi} \int_{-\infty}^{\infty} |\tilde{f}(k)|^{2} dk$$