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Application in Statistical Mechanics

Consider the exponential probability distribution
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Compute its Fourier transform and verify your answer by an inverse
Solution
The forward transform of the distribution
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can also be interpreted as
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Function Recovery

Reverse transform is given as
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To use complex integration, set z = k + iy and take g(z) = P
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The residue at z = i), yields
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Yielding us | A e = f(x)




Application in Quantum Mechanics

The wavefunction of a free electron in one dimension is given by
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Get the probability distributions in position and momentum spaces

Solution
Notice that f(x) is a complex quantity, but its norm square
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= probability distribution

|f(x)|? peaks at x = 0 “most likely position”
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Probability Distribution in x-space

The electron is somewhere in the position x-space
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Only normalized wavefunctions can represent a physical particle

Probability of finding the e~ near some xg is |f(xg)|? dx

Q. What about momentum space?
A. To seek this, we invoke the De-Broglie's hypothesis,
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Thus momentum space is the k-space, and we therefore need
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Momentum k-space

e—(k—ko)20'2 (47m2)1/2

Gaussian Integral

where the Gaussian integral is easily solved® by contour integration

*
Refer appendix



Probability Distribution in k-space

From f(k), we obtain
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We can now invoke the Parseval’s theorem
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The e~ has some momentum, and is somewhere on the x-axis
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The momentum probability distribution is therefore,

Probability of finding the e~ near some pg = hkg is



Uncertainty Principle

The probability distributions derived so far,
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@ Fourier transform of a Gaussian is another Gaussian

e Phase factor of €™ in f(x) shifts the center of |f(k)|? to kg

@ Product of variances, af 0)2( = const | Uncertainty Principle
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N-dimensions

Fourier transforms are easily generalized to N-dimensions, say 3D
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Fourier transforming the unity
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where the 3D d-distributions in r- and k-space are respectively
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Appendix

Evaluate 7 = / e (x=b)*/(40%) gy b= (ko — k)20 >0
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Solution
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Consider z = x + iy and the function -R R x
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As R — o0, the y-integrals vanish as the integrands ~ e R, giving
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