Lecture 25: Worked Examples

Ashwin Joy
Teaching Assistant: Sanjay CP

Department of Physics, IIT Madras, Chennai - 600036

Application in Statistical Mechanics

Consider the exponential probability distribution

$$
f(x)=\left\{\begin{array}{ll}
\lambda e^{-\lambda x} & x \geq 0 \\
0 & x<0
\end{array} \quad(\lambda>0)\right.
$$

Compute its Fourier transform and verify your answer by an inverse

- Solution

The forward transform of the distribution

$$
\tilde{f}(k)=\int_{0}^{\infty} \lambda e^{-\lambda x} e^{-i k x} \mathrm{~d} x=\left.\frac{\lambda e^{(-i k-\lambda) x}}{(i k+\lambda)}\right|_{\infty} ^{0}=\frac{\lambda}{\lambda+i k}
$$

can also be interpreted as

$$
\tilde{f}(k)=\left\langle e^{-i k x}\right\rangle=\left\langle\sum_{n=0}^{\infty} \frac{(-i k x)^{n}}{n!}\right\rangle=\sum_{n=0}^{\infty} \frac{(-i k)^{n}}{n!}\left\langle x^{n}\right\rangle
$$

giving us a mean formula: $\left\langle x^{n}\right\rangle=\left.\frac{\mathrm{d}^{n}}{\mathrm{~d}(-i k)^{n}} \tilde{f}(k)\right|_{k=0} \equiv \int_{0}^{\infty} x^{n} f(x) \mathrm{d} x$

Function Recovery

Reverse transform is given as

$$
f(x)=\frac{\lambda}{2 \pi} \int_{-\infty}^{\infty} \frac{e^{i k x}}{\lambda+i k} \mathrm{~d} k=\frac{\lambda}{2 \pi i} \int_{-\infty}^{\infty} \frac{e^{i k x}}{k-i \lambda} \mathrm{~d} k
$$

To use complex integration, set $z=k+i y$ and take $g(z)=\frac{e^{i z x}}{z-i \lambda}$
The residue at $z=i \lambda$, yields

$$
\frac{\lambda}{2 \pi i} \oint_{\mathcal{C}} g(z) \mathrm{d} z=\lambda e^{-\lambda x}
$$

$\lambda e^{-\lambda x}=\lim _{R \rightarrow \infty} \frac{\lambda}{2 \pi i}[\int_{-R}^{R} \frac{e^{i k x}}{k-i \lambda} \mathrm{~d} k+\int_{0}^{\pi} \underbrace{\frac{e^{i x R \cos \theta-x R \sin \theta} i R e^{i \theta}}{R e^{i \theta}-i \lambda}}_{\sim e^{-x R} \sin \theta \rightarrow 0} \mathrm{~d} \theta]$
Yielding us $\lambda e^{-\lambda x}=f(x)$

Application in Quantum Mechanics

The wavefunction of a free electron in one dimension is given by

$$
f(x)=\left(\frac{1}{2 \pi \sigma^{2}}\right)^{1 / 4} e^{-x^{2} / 4 \sigma^{2}} e^{i k_{0} x}
$$

Get the probability distributions in position and momentum spaces
\qquad Solution

Notice that $f(x)$ is a complex quantity, but its norm square

Probability Distribution in x-space

The electron is somewhere in the position x-space

$$
\int_{-\infty}^{\infty}|f(x)|^{2} \mathrm{~d} x=\int_{-\infty}^{\infty}\left(\frac{1}{2 \pi \sigma^{2}}\right)^{1 / 2} e^{-x^{2} / 2 \sigma^{2}} \mathrm{~d} x=1
$$

Only normalized wavefunctions can represent a physical particle
Probability of finding the e^{-}near some x_{0} is $\left|f\left(x_{0}\right)\right|^{2} \mathrm{~d} x$
Q. What about momentum space?
A. To seek this, we invoke the De-Broglie's hypothesis,

$$
p=\frac{h}{\lambda}=\frac{h}{2 \pi} \frac{2 \pi}{\lambda}=\hbar k
$$

Thus momentum space is the k-space, and we therefore need

$$
\tilde{f}(k)=\int_{-\infty}^{\infty} f(x) e^{-i k x} d x
$$

Momentum k-space

$$
\begin{aligned}
\tilde{f}(k) & =\int_{-\infty}^{\infty}\left(\frac{1}{2 \pi \sigma^{2}}\right)^{1 / 4} e^{-x^{2} / 4 \sigma^{2}} e^{i\left(k_{0}-k\right) x} \mathrm{~d} x \\
& =\left(\frac{1}{2 \pi \sigma^{2}}\right)^{1 / 4} \int_{-\infty}^{\infty} e^{-\left[x-i\left(k_{0}-k\right) 2 \sigma^{2}\right]^{2} /\left(4 \sigma^{2}\right)} e^{-\left(k-k_{0}\right)^{2} \sigma^{2}} \mathrm{~d} x \\
& =\left(\frac{1}{2 \pi \sigma^{2}}\right)^{1 / 4} e^{-\left(k-k_{0}\right)^{2} \sigma^{2}} \underbrace{\int_{-\infty}^{\infty} e^{-\left[x-i\left(k_{0}-k\right) 2 \sigma^{2}\right]^{2} /\left(4 \sigma^{2}\right)} \mathrm{d} x}_{\text {Gaussian Integral }} \\
& =\left(\frac{1}{2 \pi \sigma^{2}}\right)^{1 / 4} e^{-\left(k-k_{0}\right)^{2} \sigma^{2}}\left(4 \pi \sigma^{2}\right)^{1 / 2}
\end{aligned}
$$

where the Gaussian integral is easily solved* by contour integration

Probability Distribution in k-space

From $\tilde{f}(k)$, we obtain

$$
|\tilde{f}(k)|^{2}=\left(8 \pi \sigma^{2}\right)^{1 / 2} e^{-2\left(k-k_{0}\right)^{2} \sigma^{2}}
$$

We can now invoke the Parseval's theorem

$$
\frac{1}{2 \pi} \int_{-\infty}^{\infty}|\tilde{f}(k)|^{2} \mathrm{~d} k=1=\int_{-\infty}^{\infty}|f(x)|^{2} \mathrm{~d} x
$$

The e^{-}has some momentum, and is somewhere on the x-axis
The momentum probability distribution is therefore, $\frac{|\tilde{f}(k)|^{2}}{2 \pi}$
Probability of finding the e^{-}near some $p_{0}=\hbar k_{0}$ is $\frac{\left|\tilde{f}\left(k_{0}\right)\right|^{2}}{2 \pi} \mathrm{~d} k$

Uncertainty Principle

The probability distributions derived so far,

$$
\frac{|\tilde{f}(k)|^{2}}{2 \pi}=\left(\frac{2 \sigma^{2}}{\pi}\right)^{1 / 2} e^{-2\left(k-k_{0}\right)^{2} \sigma^{2}} \quad|f(x)|^{2}=\left(\frac{1}{2 \pi \sigma^{2}}\right)^{1 / 2} e^{-x^{2} / 2 \sigma^{2}}
$$

- Fourier transform of a Gaussian is another Gaussian
- Phase factor of $e^{i k_{0} x}$ in $f(x)$ shifts the center of $|\tilde{f}(k)|^{2}$ to k_{0}
- Product of variances, $\sigma_{k}^{2} \sigma_{x}^{2}=$ const Uncertainty Principle

N-dimensions

Fourier transforms are easily generalized to N-dimensions, say 3D

$$
\begin{aligned}
\tilde{f}(\mathbf{k}) & =\int_{V(\mathbf{r})} f(\mathbf{r}) e^{-i \mathbf{k} \cdot \mathbf{r}} d^{3} \mathbf{r} \\
f(\mathbf{r}) & =\frac{1}{(2 \pi)^{3}} \int_{V(\mathbf{k})} \tilde{f}(\mathbf{k}) e^{i \mathbf{k} \cdot \mathbf{r}} \mathrm{~d}^{3} \mathbf{k}
\end{aligned}
$$

Fourier transforming the unity

$$
\begin{array}{ll}
\int_{V(\mathbf{r})} e^{-i \mathbf{k} \cdot \mathbf{r}} d^{3} \mathbf{r}=(2 \pi)^{3} \delta^{3}(\mathbf{k}) & \int_{V(\mathbf{k})} e^{i \mathbf{k} \cdot \mathbf{r}} \delta^{3}(\mathbf{k}) \mathrm{d}^{3} \mathbf{k}=1 \\
\int_{V(\mathbf{k})} e^{-i \mathbf{k} \cdot \mathbf{r}} \mathrm{~d}^{3} \mathbf{k}=(2 \pi)^{3} \delta^{3}(\mathbf{r}) & \int_{V(\mathbf{r})} e^{i \mathbf{k} \cdot \mathbf{r}} \delta^{3}(\mathbf{r}) \mathrm{d}^{3} \mathbf{r}=1
\end{array}
$$

where the 3D δ-distributions in \mathbf{r} - and \mathbf{k}-space are respectively

$$
\begin{aligned}
\delta^{3}(\mathbf{r}) & =\delta(x) \delta(y) \delta(z) \\
\delta^{3}(\mathbf{k}) & =\delta\left(k_{x}\right) \delta\left(k_{y}\right) \delta\left(k_{z}\right)
\end{aligned}
$$

Appendix

Evaluate $\mathcal{I}=\int_{-\infty}^{\infty} e^{-(x-i b)^{2} /\left(4 \sigma^{2}\right)} \mathrm{d} x \quad b=\left(k_{0}-k\right) 2 \sigma^{2}>0$

Solution

Consider $z=x+i y$ and the function

$$
\begin{aligned}
& f(z)=e^{-z^{2} /\left(4 \sigma^{2}\right)} \text { and the loop } \mathcal{C} \\
& \oint_{\mathcal{C}} f(z) \mathrm{d} z=0
\end{aligned}
$$

$$
=\int_{-R}^{R} e^{-(x-i b)^{2} / 4 \sigma^{2}} \mathrm{~d} x+\int_{-b}^{0} e^{-(R+i y)^{2} /\left(4 \sigma^{2}\right)} \mathrm{d}(i y)
$$

$$
+\int_{R}^{-R} e^{-x^{2} / 4 \sigma^{2}} \mathrm{~d} x+\int_{0}^{-b} e^{-(-R+i y)^{2} /\left(4 \sigma^{2}\right)} \mathrm{d}(i y)
$$

As $R \rightarrow \infty$, the y-integrals vanish as the integrands $\sim e^{-R^{2}}$, giving

$$
\mathcal{I}=\sqrt{4 \pi \sigma^{2}}
$$

