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Application in Statistical Mechanics

Consider the exponential probability distribution

f (x) =

{
λ e−λx x ≥ 0

0 x < 0
(λ > 0)

Compute its Fourier transform and verify your answer by an inverse

Solution
The forward transform of the distribution

f̃ (k) =

∫ ∞
0

λ e−λx e−ikx dx =
λ e(−ik−λ)x

(ik + λ)

∣∣∣∣0
∞

=
λ

λ+ ik

can also be interpreted as

f̃ (k) = 〈e−ikx〉 =

〈 ∞∑
n=0

(−ikx)n

n!

〉
=
∞∑
n=0

(−ik)n

n!
〈xn〉

giving us a mean formula: 〈xn〉 =
dn

d(−ik)n
f̃ (k)

∣∣∣∣
k=0

≡
∫ ∞
0

xn f (x) dx



Function Recovery

Reverse transform is given as

f (x) =
λ

2π

∫ ∞
−∞

e ikx

λ+ ik
dk =

λ

2πi

∫ ∞
−∞

e ikx

k − iλ
dk

To use complex integration, set z = k + iy and take g(z) =
e izx

z − iλ

The residue at z = iλ, yields

λ

2πi

∮
C
g(z) dz = λe−λx

λe−λx = lim
R→∞

λ

2πi

[∫ R

−R

e ikx

k − iλ
dk+

∫ π

0

e ixR cos θ−xRsin θ iRe iθ

Re iθ − iλ︸ ︷︷ ︸
∼ e−xR sin θ→ 0

dθ

]

Yielding us λ e−λx = f (x)



Application in Quantum Mechanics

The wavefunction of a free electron in one dimension is given by

f (x) =

(
1

2πσ2

)1/4

e−x
2/4σ2

e ik0x

Get the probability distributions in position and momentum spaces

Solution

Notice that f (x) is a complex quantity, but its norm square

|f (x)|2 =

(
1

2πσ2

)1/2

e−x
2/2σ2

is real

≡ probability distribution

|f (x)|2 peaks at x = 0 “most likely position”



Probability Distribution in x-space

The electron is somewhere in the position x-space∫ ∞
−∞
|f (x)|2 dx =

∫ ∞
−∞

(
1

2πσ2

)1/2

e−x
2/2σ2

dx = 1

Only normalized wavefunctions can represent a physical particle

Probability of finding the e− near some x0 is |f (x0)|2 dx

Q. What about momentum space?
A. To seek this, we invoke the De-Broglie’s hypothesis,

p =
h

λ
=

h

2π

2π

λ
= ~k

Thus momentum space is the k-space, and we therefore need

f̃ (k) =

∫ ∞
−∞

f (x) e−ikx dx



Momentum k-space

f̃ (k) =

∫ ∞
−∞

(
1

2πσ2

)1/4

e−x
2/4σ2

e i(k0−k)x dx

=

(
1

2πσ2

)1/4 ∫ ∞
−∞

e−[x−i(k0−k)2σ
2]2/(4σ2) e−(k−k0)

2σ2
dx

=

(
1

2πσ2

)1/4

e−(k−k0)
2σ2

∫ ∞
−∞

e−[x−i(k0−k)2σ
2]2/(4σ2) dx︸ ︷︷ ︸

Gaussian Integral

=

(
1

2πσ2

)1/4

e−(k−k0)
2σ2

(4πσ2)1/2

where the Gaussian integral is easily solved∗ by contour integration

∗
Refer appendix



Probability Distribution in k-space

From f̃ (k), we obtain

|f̃ (k)|2 = (8πσ2)1/2 e−2(k−k0)
2σ2

We can now invoke the Parseval’s theorem

1

2π

∫ ∞
−∞
|f̃ (k)|2 dk = 1 =

∫ ∞
−∞
|f (x)|2 dx

The e− has some momentum, and is somewhere on the x-axis

The momentum probability distribution is therefore,
|f̃ (k)|2

2π

Probability of finding the e− near some p0 = ~k0 is
|f̃ (k0)|2

2π
dk



Uncertainty Principle

The probability distributions derived so far,

|f̃ (k)|2

2π
=

(
2σ2

π

)1/2

e−2(k−k0)
2σ2 |f (x)|2 =

(
1

2πσ2

)1/2

e−x
2/2σ2

Fourier transform of a Gaussian is another Gaussian

Phase factor of e ik0x in f (x) shifts the center of |f̃ (k)|2 to k0

Product of variances, σ2k σ
2
x = const Uncertainty Principle



N-dimensions

Fourier transforms are easily generalized to N-dimensions, say 3D

f̃ (k) =

∫
V (r)

f (r) e−ik·r d3r

f (r) =
1

(2π)3

∫
V (k)

f̃ (k) e ik·r d3k

Fourier transforming the unity∫
V (r)

e−ik·r d3r = (2π)3 δ3(k)

∫
V (k)

e ik·r δ3(k) d3k = 1∫
V (k)

e−ik·r d3k = (2π)3 δ3(r)

∫
V (r)

e ik·r δ3(r) d3r = 1

where the 3D δ-distributions in r- and k-space are respectively

δ3(r) = δ(x) δ(y) δ(z)

δ3(k) = δ(kx) δ(ky ) δ(kz)



Appendix

Evaluate I =

∫ ∞
−∞

e−(x−ib)
2/(4σ2) dx b = (k0 − k)2σ2 > 0

Solution

Consider z = x + iy and the function

f (z) = e−z
2/(4σ2) and the loop C∮

C
f (z) dz = 0

=

∫ R

−R
e−(x−ib)

2/4σ2
dx +

∫ 0

−b
e−(R+iy)2/(4σ2) d(iy)

+

∫ −R
R

e−x
2/4σ2

dx +

∫ −b
0

e−(−R+iy)2/(4σ2) d(iy)

As R →∞, the y -integrals vanish as the integrands ∼ e−R
2
, giving

I =
√

4πσ2


