Lecture 27: Worked Examples

Ashwin Joy Teaching Assistant: Sanjay CP

Department of Physics, IIT Madras, Chennai - 600036

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

f(x)	$\mathcal{L}[f(x)] = F(s)$	Convergence Condition
1	$\frac{1}{s}$	Re <i>s</i> > 0
$\delta(x-x_0) (x>x_0)$	e^{sx_0}	
$\sin \lambda x$	$\frac{\lambda}{s^2+\lambda^2}$	Re <i>s</i> > 0
$\cos \lambda x$	$rac{s}{s^2+\lambda^2}$	Re <i>s</i> > 0
x ⁿ	$\frac{n!}{s^{n+1}}$	Re <i>s</i> > 0
$e^{-\lambda x}$	$\frac{1}{s+\lambda}$	$Re\;(s+\lambda)>0$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Worked Example

Derive the function f(x) whose Laplace transform is given as

$$\mathcal{L}[f(x)] = F(s) = \frac{1}{(s^2 + 1)(s - 1)}$$

Solution

Method 1: We will use the table of transforms

$$F(s) = \frac{A}{(s+i)} + \frac{B}{(s-i)} + \frac{C}{(s-1)}$$

with $A = \frac{1}{2i(i+1)}$ $B = \frac{1}{2i(i-1)}$ $C = \frac{1}{2}$
 $f(x) = \mathcal{L}^{-1}[F(s)] = A \underbrace{e^{-ix}}_{\text{Re}(s+i)>0} + B \underbrace{e^{ix}}_{\text{Re}(s-i)>0} + C \underbrace{e^{x}}_{\text{Re}(s-1)>0}$
 $f(x) = Ae^{-ix} + Be^{ix} + Ce^{x}$ (Re $s > 1$)

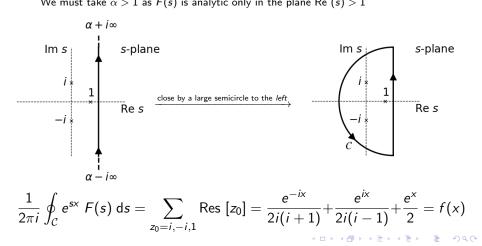
(ロ)、

Taking the bull by its horns...

Method 2: "Bromwich integral"

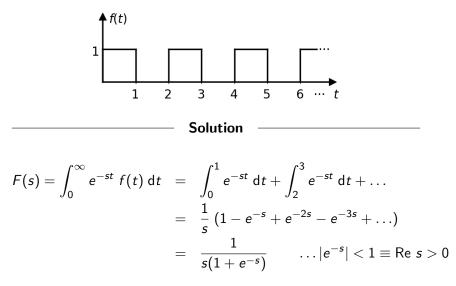
$$f(x) = \frac{1}{2\pi i} \int_{\alpha - i\infty}^{\alpha + \infty} e^{sx} F(s) \, \mathrm{d}s = \frac{1}{2\pi i} \int_{\alpha - i\infty}^{\alpha + \infty} \frac{e^{sx}}{(s + i)(s - i)(s - 1)} \, \mathrm{d}s$$

We must take $\alpha > 1$ as F(s) is analytic only in the plane Re (s) > 1



Worked Example

Find the Laplace transform of the square wave triggered at t = 0



・ロマ・山マ・山田・山田・山

Ordinary Differential Equations (ODE)

Laplace transforms can be used to solve ODEs. For eg.,

$$\mathcal{L}[f'(x)] = \int_0^\infty e^{-sx} f'(x) \, dx = e^{-sx} f(x) \Big|_0^\infty + s \int_0^\infty e^{-sx} f(x) \, dx$$

= $s \, \mathcal{L}[f(x)] - f(0)$

Similarly,

$$\mathcal{L}[f''(x)] = s \mathcal{L}[f'(x)] - f'(0) = s(s \mathcal{L}[f(x)] - f(0)) - f'(0)$$

= $s^2 \mathcal{L}[f(x)] - s f(0) - f'(0)$

Thus to solve an n^{th} order ODE, we need $\underbrace{f(0), f^{(1)}(0) \dots f^{(n-1)}(0)}_{\text{boundary (or initial) conditions}}$

Radioactivity

Three radioactive nuclei decay successively in series

 $1 \longrightarrow 2 \longrightarrow 3 \longrightarrow \cdots$

$$\frac{\mathrm{d}N_1}{\mathrm{d}t} = -\lambda_1 N_1$$
$$\frac{\mathrm{d}N_2}{\mathrm{d}t} = -\lambda_2 N_2 + \lambda_1 N_1$$
$$\frac{\mathrm{d}N_3}{\mathrm{d}t} = -\lambda_3 N_3 + \lambda_2 N_2$$

If $N_1(0) = N$, $N_2(0) = 0$, $N_3(0) = n$, find $N_3(t)$

Solution

Taking Laplace transforms of these ODEs,

$$s \mathcal{L}[N_{1}] - N_{1}(0) = s \mathcal{L}[N_{1}] - N = -\lambda_{1} \mathcal{L}[N_{1}]$$

$$s \mathcal{L}[N_{2}] - N_{2}(0) = s \mathcal{L}[N_{2}] = -\lambda_{2} \mathcal{L}[N_{2}] + \lambda_{1} \mathcal{L}[N_{1}]$$

$$s \mathcal{L}[N_{3}] - N_{3}(0) = s \mathcal{L}[N_{3}] - n = -\lambda_{3} \mathcal{L}[N_{3}] + \lambda_{2} \mathcal{L}[N_{2}]$$

continued ...

$$\mathcal{L}[N_1] = \frac{N}{\lambda_1 + s}$$

$$\mathcal{L}[N_2] = \frac{\lambda_1 N}{(\lambda_1 + s)(\lambda_2 + s)}$$

$$\mathcal{L}[N_3] = \frac{1}{\lambda_3 + s} \left[n + \frac{\lambda_1 \lambda_2 N}{(\lambda_1 + s)(\lambda_2 + s)} \right]$$

Using tables, we invert the last

$$N_3(t) = ne^{-\lambda_3 t} + \lambda_1 \lambda_2 N(Ae^{-\lambda_1 t} + Be^{-\lambda_2 t} + Ce^{-\lambda_3 t})$$

with

$$\frac{1}{(\lambda_1+s)(\lambda_2+s)(\lambda_3+s)} = \frac{A}{\lambda_1+s} + \frac{B}{\lambda_2+s} + \frac{C}{\lambda_3+s}$$
$$A = \frac{1}{(\lambda_2-\lambda_1)(\lambda_3-\lambda_1)}, B = \frac{1}{(\lambda_1-\lambda_2)(\lambda_3-\lambda_2)}, C = \frac{1}{(\lambda_1-\lambda_3)(\lambda_2-\lambda_3)}$$

Using Bromwich integral

Recalling that

$$\begin{aligned} \mathcal{L}[N_3] &= \frac{1}{\lambda_3 + s} \left[n + \frac{\lambda_1 \lambda_2 N}{(\lambda_1 + s)(\lambda_2 + s)} \right] \\ N_3(t) &= \frac{1}{2\pi i} \int_{\alpha - i\infty}^{\alpha + i\infty} \frac{e^{st}}{\lambda_3 + s} \left[n + \frac{\lambda_1 \lambda_2 N}{(\lambda_1 + s)(\lambda_2 + s)} \right] ds \end{aligned}$$

