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Primordial features are 
scale-dependent deviations 
from near-scale invariant 
primordial spectrum from 
inflation. 

Observationally, they 
improve the fit to CMB data. 
Theoretically, they encode 
invaluable information about 
Early Universe Physics.



PRIMORDIAL FEATURES: WHAT THEY 
ARE AND HOW TO TEST THEM

1

2HINTS OF FEATURES IN CMB DATA FROM PLANCK
Using a recently developed 
model as an example, I 
illustrate the challenges for 
data comparison and the 
immense reward in case of a 
detection of primordial 
features.

Primordial features are 
scale-dependent deviations 
from near-scale invariant 
primordial spectrum from 
inflation. 

Observationally, they 
improve the fit to CMB data. 
Theoretically, they encode 
invaluable information about 
Early Universe Physics.



PRIMORDIAL FEATURES: WHAT THEY 
ARE AND HOW TO TEST THEM

1

2

3

HINTS OF FEATURES IN CMB DATA FROM PLANCK

PROSPECTS FOR TESTING 
FEATURES WITH FUTURE 
CMB EXPERIMENTS

Using a recently developed 
model as an example, I 
illustrate the challenges for 
data comparison and the 
immense reward in case of a 
detection of primordial 
features.

Future experiments 
will map the E-modes 
of the CMB with a 
much better accuracy 
than Planck at all 
scales.


This will greatly 
enhance (or reduce) 
the statistical 
significance of 
primordial features.

Primordial features are 
scale-dependent deviations 
from near-scale invariant 
primordial spectrum from 
inflation. 

Observationally, they 
improve the fit to CMB data. 
Theoretically, they encode 
invaluable information about 
Early Universe Physics.



INFLATION & PRIMORDIAL FEATURES



NOTATIONS
ds2 = − dt2 + a2(t)dx2 = − a2(τ)[dτ2 − dx2]FLRW Metric

Scale factor a(t)

Comoving distance x

Physical distance a(t)x

Hubble parameter H = d ln a/dt
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SLOW-ROLL INFLATION AND NEAR SCALE-INVARIANCE
Action of a scalar field

S = ∫ d4x −g [−
(∂ϕ)2

2
− V(ϕ)]

 to preserve homogeneity ϕ = ϕ(t)

H2 =
1
3 [

·ϕ2

2
+ V(ϕ)]

··ϕ + 3H ·ϕ + dV/dϕ = 0

Conditions for inflation
··a(t) > 0

−
·H

H2
≪ 1
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SLOW-ROLL INFLATION AND NEAR SCALE-INVARIANCE

ϵ =
·ϕ2

2H2
≪ 1

η = ·ϵ/Hϵ ≪ 1

Slow-roll conditions



SLOW-ROLL INFLATION AND NEAR SCALE-INVARIANCE
Quantum fluctuations  δϕ(x, t)



SLOW-ROLL INFLATION AND NEAR SCALE-INVARIANCE

𝒫(k) = ( H
·ϕ )

2

𝒫δϕ(k) = ( H
·ϕ )

2

|δϕk|2

Quantum fluctuations  δϕ(x, t)

Primordial power spectrum

δ ̂ϕ(x, t) = ∑
k

[b̂kδϕk(t) + b̂†
kδϕ*k (t)]



SLOW-ROLL INFLATION AND NEAR SCALE-INVARIANCE
Slow-roll conditions



ϵ = ·ϕ2/2M2
plH

2 ≪ 1

η = ·ϵ/Hϵ ≪ 1

Predictions



As = H2/8π2ϵM2
pl

ns − 1 = − 2ϵ − η

𝒫(k) = ( H
·ϕ )

2

𝒫δϕ(k) ≡ As ( k
k* )

ns−1

Slow-roll inflation predicts ns ≃ 1
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𝒫(k) = ( H
·ϕ )

2
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SEEDS FOR COSMIC MICROWAVE BACKGROUND ANISOTROPIES

𝒫(k) = ( H
·ϕ )

2

𝒫δϕ(k) ≡ As ( k
k* )

ns−1

PLANCK 2018 



HOW TO CONSTRAIN THE PRIMORDIAL POWER SPECTRUM 
Cℓ ∝ ∫ d ln k T(k) 𝒫(k)

CMB transfer functions
Cℓ ∝ As ( ℓ

ℓ* )
ns−1

∫ d ln k T(k)



HOW TO CONSTRAIN THE PRIMORDIAL POWER SPECTRUM 

Cℓ ∝ As ( ℓ
ℓ* )

ns−1

∫ d ln k T(k)



THE PRIMORDIAL SPECTRUM AND THE CMB
Cℓ ∝ ∫ d ln k T(k) 𝒫(k)𝒫(k) = As ( k

k* )
ns−1

PLANCK 2018 PLANCK 2018 



THE PRIMORDIAL SPECTRUM AND THE CMB
𝒫(k) = As ( k

k* )
ns−1

PLANCK 2018 

ns = 0.9649 ± 0.0042 (68 % CL)

Slow-roll inflation is consistent with data!

Cℓ ∝ ∫ d ln k T(k) 𝒫(k)



SLOW-ROLL INFLATION AND NEAR SCALE-INVARIANCE

PLANCK 2018  INFLATION PAPER



FEATURES IN THE 
PRIMORDIAL SPECTRUM (?)

Features are small (oscillatory) corrections to the near scale 
invariant power spectrum



OBSERVABLE EFFECTS OF FEATURES 
𝒫(k) = As ( k

k* )
ns−1

(1 +
ΔP
P )
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OBSERVABLE EFFECTS OF FEATURES 

Cℓ ∝ ∫ d ln k T(k) 𝒫(k)

Testable

Not testable



OBSERVABLE EFFECTS OF FEATURES 
δℓ ∼

C
ΔXY

ℓ ∫
log kℓ+Δ/2

log kℓ−Δ/2
d log k sin(ω log k) δℓ ∼

C
ΔXY

ℓ ∫
log kℓ+Δ/2

log kℓ−Δ/2
d log k sin(k/k0)



FEATURES & 
BEYOND SLOW-ROLL

DATA THEORY



NEAR SCALE 
INVARIANCE?

The standard cosmological model is completely specified by 6 
parameters. Do we need deviations from scale invariance?



NEAR SCALE 
INVARIANCE?

ℓ ∼ 20



NEAR SCALE 
INVARIANCE?

High ℓ

ℓ ∼ 20
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INFLATIONARY LANDSCAPES



- Primordial features improve a lot the fit (i.e. the  ) to data, but 
the introduce extra parameters: penalized Bayesian evidence.


- Features in Planck data have a low SNR + larger prior volume: 
multimodal distributions.


- Highly oscillatory features: overfitting issues & need to increase 
accuracy  of Einstein-Boltzmann solvers

χ2

HOW TO TEST FEATURES: CHALLENGES



HOW TO TEST 
FEATURES

BOTTOM-UP TOP-DOWN



BOTTOM-UP APPROACH (Reconstruction of the primordial power spectrum)

Handley et al 2019,  but see also a lot of works by Dhiraj



BOTTOM-UP APPROACH (Reconstruction of the primordial power spectrum)

Handley et al 2019,  but see also a lot of works by Dhiraj

PROS

- Model 
independence

CONS
- The results are not 

necessarily 
physical


- Not sensitive to 
features finer than 
the binning


- Typically requires 
large number of 
parameters
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TOP-DOWN APPROACH (Fitting models to data)

PROS
- Model 

dependence 
(extract clear info 
from data)


- Fewer extra 
parameters


- High predictivity


- Access to high 
frequency features

CONS
- Model 

dependence 
(more restricted 
scope)



TOP-DOWN APPROACH (Fitting models to data)

∼ sin (2k/k0)
Produced by 
momentary 

departure of a 
background 

quantity from the 
attractor solution 

| ·B/BH| ≪ 1

∼ sin [ω log (2k/kr)]
Produced by 
the periodic 

oscillation of a 
background 

quantity 
around the 

attractor  

Sharp 
features

Resonant 
features



STATUS OF FEATURES

From Planck inflation paper 2018

😢
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EXAMPLE OF TOP-DOWN ANALYSIS:

CLASSICAL PRIMORDIAL STANDARD CLOCKS

BRAGLIA, CHEN, HAZRA       ARXIV: 2103.03025, 2106.07546, 2108.10110



PRIMORDIAL STANDARD CLOCKS SIGNAL

ΔP
P

∼ ( 2k
kr )

α

sin [ p2

1 − p
mσ

H ( 2k
kr )

1/p

+ φ]

ΔP
P

∼ sin (2k/k0 + phase)
Sharp feature signal

Resonant feature signal

Full clock signal (correction to the leading order near scale invariant spectrum)

=

+
Depends on the mechanism exciting the oscillations


Produced by the sub horizon resonance with the 

background oscillations of the curvature modes 

CHEN 2011A, CHEN 2011B, CHEN & NAMJOO 2014, CHEN, NAMJOO, WANG 2014



PRIMORDIAL STANDARD CLOCKS SIGNAL

ΔP
P

∼ ( 2k
kr )

α

sin [ p2

1 − p
mσ

H ( 2k
kr )

1/p

+ φ]

ΔP
P

∼ sin (2k/k0 + phase) is the scale of the sharp feature. It sets the 

frequency of the sin

k0 = a0H0

 records the evolution of the scale factor (remember 

). It sets the running of the resonant signal

p

a(t) ∼ tp

 is the effective mass of the heavy field. It sets 

the frequency of the resonant signal

mσ /H

What can we learn if the signal is detected?

CHEN 2011A, CHEN 2011B, CHEN & NAMJOO 2014, CHEN, NAMJOO, WANG 2014



PRIMORDIAL STANDARD CLOCKS SIGNAL

ΔP
P

∼ ( 2k
kr )

α

sin [ p2

1 − p
mσ

H ( 2k
kr )

1/p

+ φ]

ΔP
P

= C(k) sin (2k/k0 + phase) is the scale of the sharp feature. It sets the frequency of the k0 = a0H0

 records the evolution of the scale factor (remember ). It sets the 

running of the resonant signal

p a(t) ∼ tp

 is the effective mass of the heavy field. It sets the frequency of the 

resonant signal

mσ /H

What can we learn if the signal is detected?

The envelope gives us information about which sharp feature 

mechanism excited the background oscillations.


CHEN 2011A, CHEN 2011B, CHEN & NAMJOO 2014, CHEN, NAMJOO, WANG 2014
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MODEL BUILDING: EMBEDDING IN A 2 FIELD LAGRANGIAN 
ℒ = −

1
2 [1 + Ξ Heav(Θ − Θ0)σ]2(∂Θ)2 + Vinf {(1 −

CΘ

2
Θ2)} −

(∂σ)2

2
+

m2
σ

2
σ2



COMPARISON WITH 
PLANCK DATA
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Model Lagrangian
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Model parameters


Numerical solution using BINGO


 


 

Braglia, Hazra, Sriramkumar, Finelli 2020



DATA ANALYSIS PIPELINE
Model Lagrangian


Effective parameters describing distinct properties of the signal


Model parameters


Numerical solution using BINGO


CMB spectra with CAMB


 

Lewis, Challinor, Lasenby 2000



DATA ANALYSIS PIPELINE
Model Lagrangian


Effective parameters describing distinct properties of the signal


Model parameters


Numerical solution using BINGO


CMB spectra with CAMB


Nested sampling (POLYCHORD)
Handley, Hobson, Lasenby 2015



DATA ANALYSIS PIPELINE
Model Lagrangian


Effective parameters describing distinct properties of the signal


Model parameters


Numerical solution using BINGO


CMB spectra with CAMB


Nested sampling



ANALYSIS USING PLANCK 2018 TTTEEE DATA

Multimodal posteriors


 ln B = − 1.2 ± 0.30

The model is currently 

indistinguishable from the 

SM
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ANALYSIS USING PLANCK 2018 TTTEEE DATA

Multimodal posteriors


 ln B = − 1.2 ± 0.30

The model is currently 

indistinguishable from the 

SM

 Tilt and 

amplitude tightly 

constrained 

Feature parameters 

are less constrained



Sharp feature Clock signal 

PLANCK 2018  BESTFIT



ADDRESSING LARGE AND SMALL SCALES ANOMALIES 
ADDING A STEP



IS THERE A FUTURE FOR FEATURES?
BRAGLIA, CHEN, HAZRA                 ARXIV: 2106.07546, 2108.10110

BRAGLIA, CHEN, HAZRA PINOL    ARXIV: 220X.XXXXX



FEATURE MODELS 
Other feature models provide a similar fit to Planck 



FORECASTS FOR FUTURE CMB EXPERIMENTS

SO

LiteBIRD

CMB S4

PICO

2023 2028 NASA concept2030 (?)∼



CPSC FIDUCIAL We assume the CPSC bestfit is the true model of the Universe

CPSC WHAT WILL WE LEARN?

-  detection of the feature 
amplitude: detection of a massive 
particle


- The mass of the particle will be tightly 
constrained to  by 
S4


- Evidence for inflation

4σ to 6σ

mσ /H = 18.16 ± 0.83
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CPSC FIDUCIAL We assume the CPSC bestfit is the true model of the Universe

CPSC BUMP



CPSC FIDUCIAL We assume the CPSC bestfit is the true model of the Universe

CPSC TURN



CPSC FIDUCIAL We assume the CPSC bestfit is the true model of the Universe

CPSC



FEATURELESS FIDUCIAL We assume the featureless bestfit 
is the true model of the Universe

As − ns CPSC
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FEATURELESS FIDUCIAL We assume the featureless bestfit 
is the true model of the Universe

As − ns



- Features carry invaluable information 

about the dynamics of the Early 

Universe


- They are not statistical significant, but 

we found some very interesting bestfit 

candidates


- Future experiments will put stringent 

constraints on them making it possible 

to inspect exotic Early Universe Physics

CONCLUSIONS



- Primordial non-

Gaussianities

PROSPECTS

PLANCK 2018 PRIMORDIAL NON-GAUSSIANITY 



- Primordial non-

Gaussianities


- Test feature signals with 

LSS data

PROSPECTS

BUTLER ET AL 2018



PROSPECTS
- Primordial non-

Gaussianities


- Test feature signals with 

LSS data


- Test features with GW 

interferometers?
BRAGLIA, CHEN, HAZRA, ARXIV: 2012:05821
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- Test the feature signals with 

LSS data


- Test features clocks GW 

interferometers? 


- Or with other Physics? TRIPATHY ET AL, ARXIV: 2111.01478



PROSPECTS
- Primordial non-Gaussianities


- Test the feature signals with 

LSS data


- Test features clocks GW 

interferometers? 


- Or with other Physics?

THANK YOU!


