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CMB Temperature Anisotropy Map

Figure 1: CMB Temperature Anisotropy Full Sky Map

[Aghanim:2015xee] Aghanim, N. and others
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Observed CMB TT Power Spectrum
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Figure 2: TT Power Spectrum

[Aghanim:2015xee] Aghanim, N. and others
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CMB Temperature Anisotropy Evolution Kernel

Figure 3: This plot shows a top-down view of the scaled transfer function given by
GTT
ℓ (k)/GTT

ℓ (k)max , scaled to a maximum power value of 1. The first plot shows the
function with the complete power range 0 to 1 on the colorbar and a power level
contour of 0.01. The second plot shows the function in a power range 0 upto 0.001 on
the colorbar with a power level contour of 0.0001.
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CMB Temperature Anisotropy Evolution Kernel
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Figure 4: The plot shows the kernel with the numerical integration step size multiplied
GTT
ℓk = GTT

ℓ (k)∆k, projected onto the k vs GTT
ℓ (k) plane where ℓ is parametrized as

a color gradient within blocks of ℓ with corresponding ∆ℓ step sizes showing the
plotted frequency of ℓ blocks. The ℓ blocks are roughly segmented by the relative
amount of power they transfer.
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Weak Lensing Of CMB Over Cosmological Evolution

Figure 5: Weak Gravitational Lensing of CMB Photons

Copyright ESA and the Planck Collaboration Id 298281
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Unlensed CMB Map Representation

Figure 6: Unlensed CMB Fields, Credits : D. Hanson
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Lensed CMB Map Representation

Figure 7: Lensed CMB Fields, Credits : D. Hanson
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Why CMB Weak Lensing ?

▶ Lensing is a carrier of information about fundamental physics

▶ Lensing is also a contaminant of other observables that carry
information about said fundamental physics

▶ Lensing power spectra Cϕϕ
L , map ϕ(n̂) carry information about

cosmological parameters such as w , Σmν

▶ Lensing needs to be cleaned from other spectra, for example
to search for primordial B-modes from CBB

L , parametrized by
the tensor-to-scalar ratio r .
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Background Image Credit: Nicolle R. Fuller, National Science Foundation
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Gravitational Lensing in Cosmology

Inflation, 
Primordial Scalar Perturbations

Projected Weak Lensing Map,
Power Spectrum
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Lensing vs Unlensed, Relative Difference

All cosmological power spectra generated using CAMB (Lewis, Challinor, Lasenby, DOI: 10.1086/309179)
All maps generated using Healpix (The healpix primer, Gorski, Wandelt, Hansen, Hivon, Banday, astro-ph/9905275)
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Gravitational Lensing in Cosmology
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All maps and figures obtained from N. Aghanim et al. 
“Planck 2018 results. I. Overview and the cosmological legacy of Planck”. In: Astron. Astrophys. 641 (2020), A1.
“Planck 2018 results. V. CMB power spectra and likelihoods”. In: Astron. Astrophys. 641 (2020), A5.

“Planck 2018 results. VIII. Gravitational lensing”. In: Astron. Astrophys. 641 (2020), A8.
“Planck 2018 results. X. Constraints on inflation”. In: Astron. Astrophys. 641 (2020), A10.
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Why Study Free-Form PR(k) Reconstruction ?

Planck 2015 results. XX. Constraints on inflation, Planck
Collaboration � P.A.R. Ade (Cardiff U.) et al., DOI:

10.1051/0004-6361/201525898
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Brief History of Free-Form Richardson-Lucy PR(k)
Reconstruction

▶ Originally proposed for CMB power spectrum deconvolution in
Arman Shafieloo and Tarun Souradeep. “Primordial power
spectrum from WMAP”. In: Phys. Rev. D 70 (2004), p.
043523.

▶ Free-form estimation of PR(k) for model independent
deconvolution

▶ Further developed on Planck data most recently by Dhiraj
Kumar Hazra, Arman Shafieloo, and Tarun Souradeep.
“Primordial power spectrum from Planck”. In: JCAP 11
(2014), p. 011.



WMAP And Planck Reconstructions

Arman Shafieloo and Tarun Souradeep. “Estimation of Primordial Spectrum
with post-WMAP 3 year data”. In: Phys. Rev. D 78 (2008), p. 023511.

Dhiraj Kumar Hazra, Arman Shafieloo, and Tarun Souradeep. “Primordial
power spectrum from Planck”. In: JCAP 11 (2014), p. 011.
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Richardson-Lucy Reconstruction Algorithm
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Following Arman Shafieloo and Tarun Souradeep. “Estimation of
Primordial Spectrum with post-WMAP 3 year data”. In: Phys.
Rev. D 78 (2008), p. 023511.
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Temperature Anisotropy Lensing Power Spectra
Comparison
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Figure 31: Lensed and unlensed power spectrum and the fractional change in power
due to lensing at different scales. (Simulated Using CAMB)
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Iterative Delensing For PR(k) Recovery From CTT
L
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Non-Linear Iterative Richardson-Lucy(NIRL) Algorithm
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(Chandra and Souradeep, arXiv:2112.14008)
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Default RL PR(k) Reconstruction on Lensed C̃TT
L



47/81

NIRL PR(k) Reconstruction on Lensed C̃TT
L
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Power Law PR(k) Reconstruction on Lensed C̃TT
L
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Power Law PR(k) Reconstruction on Lensed C̃TT
L Relative

Error
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Figure 33: The figure displays the relative error of the 4 PR(k) reconstructions from
the previous figures, with respect to first reconstruction.

Chandra and Souradeep, arXiv:2112.14008
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Feature Based PR(k) Based Lensed C̃TT
L Data
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Feature Based PR(k) Reconstruction on Lensed C̃TT
L
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Feature Based PR(k) Reconstruction on Lensed C̃TT
L
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Figure 37: The figure displays the relative error of the 4 PR(k) reconstructions from
the previous figures, with respect to first reconstruction.

Chandra and Souradeep, arXiv:2112.14008
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Feature Based PR(k) Reconstruction on Lensed C̃TT
L :

Cosmic Variance Noise Limit
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Figure 38: This plot shows the lensed and unlensed CTT
ℓ using the Gaussian bump

feature, in solid lines, generated as a realization based on cosmic variance error bars.
It also shows the power law version, without any error bars or realization noise, in
dashed lines.

Chandra and Souradeep, arXiv:2112.14008
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Feature Based PR(k) Reconstruction on Lensed C̃TT
L
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L using RL
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Figure 39: The 4 figures show the reconstructed PR(k) from the feature based data,
using 500 RL reconstruction iterations. The reference power law is given in cyan
dotted lines. The reconstructed PR(k) are given in orange lines, with the binned
reconstruction in blue lines. The input feature PR(k) is given in cyan solid lines.
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Feature Based PR(k) Reconstruction on Lensed C̃TT
L with

CV Noise: Relative Error
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Figure 40: This figure shows the relative error of the 3 reconstructions of the PR(k)
displayed in the previous plots, respectively, relative to the first reconstruction, which
is held as the ideal reference reconstruction. These are based on 500 iterations of the
RL algorithm.

Chandra and Souradeep, arXiv:2112.14008
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Oscillatory Feature Based PR(k) Based Lensed C̃TT
L Data
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Oscillatory Feature PR(k) Reconstruction on Lensed C̃TT
L
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Oscillatory Feature Based PR(k) Reconstruction on Lensed

C̃TT
L Relative Error
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Figure 45: The figure displays the relative error of the 4 PR(k) reconstructions from
the previous figures, with respect to first reconstruction.

Chandra and Souradeep, arXiv:2112.14008
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Chandra and Souradeep, JCAP10(2021)081
Chandra and Souradeep, arXiv:2112.14008

New Tools Developed :
1) RL + KSS
2) NIRL
3) ? Iterative QMVE ?
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Why Use These Methods ?

▶ Planck and CORE proposal motivate the use of N-point
interpolating logarithmic spline reconstruction, where each
knot N is a free parameter. Broad spectrum model testing.

▶ RL is versatile, optimized for power spectra and model
independent analysis. Reduces need for model fitting, while
searching for novel features.

▶ NIRL is a simple, intuitive way to perform delensing in tandem
with PR(k) reconstruction given ΛCDM kernel. Hardens
against lensing caused biasing.
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Challenges Addressed In This Work

▶ PR(k) from CTT
L is in reality obtained from lensed C̃TT

L .
Earlier power law template subtraction is optimal for WMAP
data. Planck Data shows lensing is a contaminant at high
precision, high k region, needs consistent cleaning without any
assumption of template, to avoid biasing real features. Can
we do blind delensing of C̃TT

L to get true free-form PR(k) ?

▶ NIRL provides a simple, intuitive way to delens C̃TT
L while

keeping PR(k) deconvolution consistently free-form and
unbiased.

▶ NIRL has algorithmic utility beyond CMB, any deconvolution
involving positive definite quantities, order of magnitude weak
convolution signal, can utilize it.
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Possible Future Work On This Topic

▶ Implement NIRL reconstruction formalism on Planck mission
data C̃TT

L to reconstruct free form PR(k) with unbiased
consistency.

▶ Implement the KSS algorithm from Chandra and Souradeep,
JCAP10(2021)081, to NIRL for a full covariance matrix
analysis of the PR(k) reconstruction.

▶ Prepare a reconstruction package for incoming CMB data
from Simons Observatory and CMB-Stage 4, both of which
have a key focus on Inflation and primordial physics.
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CORE Forecasts

Cosmic ORigins Explorer proposed PR(k) reconstructions (Red)
and precision compared to Planck (Blue), for both power law

model and feature producing modified inflation models.
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Fin
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Weak Lensing Representation in Spherical Harmonic Basis

We need an appropriate mathematical basis to express the lensing
statistics in. We use the spherical harmonic basis for the full sky
calculations.

Figure 50: Spherical harmonics in Mollweide projection, Cunningham et al.
(Quantifying the Stellar Halo’s Response to the LMC’s Infall with Spherical
Harmonics)
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Weak Lensing Statistics in Spherical Harmonic Basis

We decompose the temperature anisotropy map in spherical
harmonic basis

ϕ(n̂) =
∑
LM

ϕLMYLM(n̂) (20)

T (n̂) =
∑
LM

ΘLMYLM(n̂) (21)

We can study the statistical properties of a given random field by
the 2-point correlation function of the harmonic coefficients, which
gives the covariance matrix

cov(Θl1m1Θl2m2) = ⟨Θl1m1Θl2m2⟩ − ⟨Θl1m1⟩⟨Θl2m2⟩ (22)

Where ⟨⟩ is the expectation value.
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Statistical Assumptions About Weak Lensing and CMB

Under the framework of the ΛCDM standard model we can assume

Underlying unlensed temperature anisotropy field ΘLM to be
Statistically Isotropic and Gaussian

⟨ΘLMΘ∗
L′M′⟩ = CTT

L δLL′δMM′ (23)

Weak lensing potential field ϕLM to be Statistically Isotropic
and Gaussian

⟨ϕLMϕ∗
L′M′⟩ = Cϕϕ

L δLL′δMM′ (24)

Weak Lensing induces statistical anisotropy in the temperature
field.
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Biposh Representation Of Covariance Matrix

We can better represent the 2-point correlation function in the
Bipolar Spherical Harmonic basis as it naturally incorporates the
off diagonal components of the covariance matrix.

ALM
ll ′ =

∑
mm′

⟨alma∗l ′m′⟩(−1)m
′CLM

lml ′−m′ (25)

Where the general 2-point function in the Biposh coefficients are
given by

C (n̂, n̂′) =
∑
ll ′

∑
LM

ALM
ll ′ {Yl(n̂)⊗ Yl ′(n̂

′)}LM (26)

(Hajian and Souradeep (2003), Souradeep et al. (2006))
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CMB Weak Lensing Quadratic Estimator
Following the formalism developed by Hu (2001), Okamoto and Hu
(2003) and D Hanson et al. (2011), we rederive in the Biposh
formalism.

ALM
ll ′ |

obs
= ALM

ll ′ |
S.I .

+ALM
ll ′ |

ϕ
(27)

⟨ALM
ll ′ |

S.I .
⟩ = (−1)lCTT

l

√
2l + 1δL0

⟨ALM
ll ′ |

ϕ
⟩ = (−1)L√

2L+ 1
ϕLM

[
CTT
l ′ FlLl ′ + CTT

l Fl ′Ll

]
(28)

Fl1l2l3 =
1

2
[l2(l2 + 1) + l3(l3 + 1)− l1(l1 + 1)]√

(2l1 + 1)(2l2 + 1)(2l3 + 1)

4π

(
l1 l2 l3
0 0 0

)
∀(l1 + l2 + l3) = even

(29)
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Minimum Variance Quadratic Estimator In Biposh
Formalism

ϕ̂LM =
∑
ll ′

wL
ll ′
ALM

ll ′ |
obs

KL
ll ′ |ϕ

(30)

⟨ϕ̂LM ϕ̂∗
L1M1

⟩ =
∑
ll ′

(wL
ll ′)

2 2CTT
l CTT

l ′

(KL
ll ′ |ϕ)2

+ ⟨ϕLMϕ∗
L1M1

⟩

Ĉ ϕ̂ϕ̂
L =N

(0)
L + Cϕϕ

L

(31)

∑
ll ′

wL
ll ′ = 1 (32)

Lagrange Function and method of Undetermined Multipliers,

L =
∑
ll ′

(wL
ll ′)

2 2CTT
l CTT

l ′

(KL
ll ′ |ϕ)2

− λ[
∑
ll ′

wL
ll ′ − 1] (33)
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Minimum Variance Quadratic Estimator In Biposh
Formalism

ϕ̂LM =
1[∑

ll ′
(KL

ll′ |ϕ )
2

CTT
l CTT

l′

]∑
ll ′

KL
ll ′ |ϕ

CTT
l CTT

l ′
ÂLM

ll ′ (34)

Ĉϕϕ
L =N

(0)
L + Cϕϕ

L + N
(1)
L + N

(2)
L

(35)

N
(0)
L =

2[∑
ll ′

(KL
ll′ |ϕ )

2

CTT
l CTT

l′

]
(36)
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Minimum Variance Quadratic Estimator Trispectra Biases

N
(1)
L =

2

W2
L

∑
l1l2l3l4

(−1)l2+l3
KL

l1l2
|
ϕ
KL

l3l4
|
ϕ

CTT
l1

CTT
l2

CTT
l3

CTT
l4∑

L′

[{
l1 l2 L
l4 l3 L′

}
(2L′ + 1)Cϕϕ

L′ KL′
l1l3 |ϕK

L′
l2l4 |ϕ

]
(37)

N
(2)
L =2Cϕϕ

L

(−1)L√
2L+ 1W2

L

∑
l1l2

Fl2Ll1KL
l1l2

|
ϕ

CTT
l1

CTT
l2[∑

lalb

CTT
la Cϕϕ

lb
F 2
l1lalb

(
l1(l1 + 1) + la(la + 1)− lb(lb + 1)

(2l1 + 1)l1(l1 + 1)

)

− 2R(l1(l1 + 1)− 1/3)CTT
l1

](∑
l3l4

(KL
l3l4

|
ϕ
)2

CTT
l3

CTT
l4

)
(38)
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MVQE Reconstruction of C κκ
L With N

(2)
L Debiasing

0 50 100 150 200 250 300
l

0.0

0.5

1.0

1.5

2.0
(l(

l+
1)

)2 C
l

/2
[(

K)
2 ]

1e-7 Cl  Reconstruction And Debiasing

Simulation Input Cl

Recovered Biased Cl

Bias Component N(2)
l

Recovered And Debiased Cl N(2)
l

Figure 51: Cκκ
L reconstruction debiasing of N

(2)
L component.
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MVQE Reconstruction of C κκ
L With N
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L Debiasing
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Figure 52: N
(2)
L bias correction.
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CMB Temperature Anisotropy Weak Lensing Formalism

The lensing remapping is expressed as

Θ̃(n̂) = Θ(n̂ + α⃗) (39)

Remapping angle vector can be expressed as gradient-scalar
plus curl-vector

α⃗ = ∇n̂ϕ+∇n̂ × Ω (40)

First order scalar metric perturbations only provide gradient
type contribution

For LSS induced lensing scalar metric perturbations relevant
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Weiner Filtering ϕ Map

ϕ̂LM =
∑
ll ′

wL
ll ′
ÂLM

ll ′ |
S.I .

KL
ll ′ |ϕ

+ ϕLM (41)

d = s + n, σ2
d = σ2

s + σ2
n, p(s) ∝ e

− s2

2σ2
s , p(n) ∝ e

− n2

2σ2
n

(42)

P(s|d) = P(d |s)P(s)
P(d)

, P(d |s) ∝ e
− (d−s)2

2σ2
n ,P(s|d) ∝ e

− 1
2

[
(d−s)2

σ2
n

+ s2

σ2
s

]
(43)

∂p(s|d)
∂s

=
2(d − s)

σ2
n

+
2s

σ2
s

= 0, s =
σ2
s

σ2
s + σ2

n

d (44)

ϕ
(W .F .)
LM =

Cϕϕ
L

Cϕϕ
L + NL

ϕ̂LM (45)
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Rk = Ψk + H
δφk

φ̇
(46)

S =

∫
d4x

√−g

[
− 1

2
∂µφ∂

µφ− V (φ)

]
(47)

φ(x, t) = φ(t) + δφ(x, t) (48)

φ̇2 << V (φ) (49)

Rµν −
1

2
gµνR = 8πGNTµν (50)

PR(k) = As

(
k

k∗

)ns−1

(51)
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CTT
L =

∫
d(lnk)PR(k)|T (S)

L (k)|2 (52)

Θ(n̂) =
∆T (n̂)

To
(53)

Cϕϕ
L = 4π

∫
PR(k)

[ ∫ χ∗

0
2Tϕ(k ; η0 − χ)

(
(χ∗ − χ)

χ∗χ

)
jL(kχ)dχ

]2 dk
k

(54)

ϕ(n̂) = −2

∫ χ∗

0
Φ(χn̂; η0 − χ)

(χ∗ − χ)

(χ∗χ)
dχ (55)

Φ(k; η) = TΦ(k ; η)R(k). (56)
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Θ̃(n̂) = Θ(n̂′) = Θ(n̂+ ∇⃗ϕ(n̂)). (57)

C̃TT
l = CTT

l + CTT
l

∑
l1

Cϕϕ
l1

S
(b)
ll1

+
∑
l1l2

Cϕϕ
l1

CTT
l2 S

(a)
ll1l2

(58)
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Reconstruction Initial Guess Sensitivity
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Figure 53: Figure a) shows the reconstructed PR(k) in blue dashed lines, given
different initial guesses PR(k)

(i=0) in yellow lines varying by slope ns . The red lines
shows the original injected power spectrum PR(K).



8/49

Kernel
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Figure 54: This plot shows a topdown view of the scaled transfer function given by
Gκκ
L (k)/Gκκ

L (k)max . The first plot shows the function with the complete power range
0 to 1 on the colorbar and 4 power level contours. The second plot shows the function
in a power range 0 upto 0.001 on the colorbar with 4 power level contours.
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PR(k) and C κκ
L Reconstruction Error
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Figure 55: The two figures show the relative % error between the reconstructed Cκκ
L

vs data realisation Cκκ
L , and the reconstructed PR(k) vs input Power Law PR(k)
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Sparse PR(k) and C κκ
L Reconstruction Error
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Figure 56: The two figures show the relative % error between the reconstructed Cκκ
L

vs data realisation Cκκ
L , and the reconstructed PR(k) vs input Power Law PR(k)
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L (k).
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Figure 59: The figure displays the relative error of the 4 PR(k) reconstructions from
the previous figures, with respect to first reconstruction, over 500 RL iterations.
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Lensing Simulation
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Figure 60: Lensed and unlensed power spectrum and the fractional change in power
due to lensing at different scales. CAMB
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Lensing Potential Power Spectrum
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Figure 61: Plot of Cϕϕ
l . Power dominates at low l . This means that large scale

structures exist at large temperature-space angular scales, which cause the lensing
effect to smoothen the peaks and valleys of the unlensed CMB anisotropy power
spectrum at smaller temperature-space angular scales.
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Figure 62: Comparison of the unlensed temperature map power spectrum for a
generated realisation ĈTT

L with Healpix RNG seed 745 (red) vs input theoretical CTT
L

(green)
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Figure 63: The unlensed and statistically isotropic CMB temperature map is shown
corresponding to the realisation Healpix seed = 745 for which we have seen the two
point angular power spectrum realisation in the previous image.
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Figure 64: Plot showing comparison between theoretical Cϕϕ
l (green) and the

reconstructed Ĉϕϕ
l (red) overlaid
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Figure 65: The realspace projected 2D weak lensing potential map is shown
corresponding to the realisation Healpix seed = 745 for which we have seen the two
point angular power spectrum realisation in the earlier image.
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Figure 66: A comparison between the reconstructed angular power spectrum ĈTT
L

(green) of the input unlensed CMB vs the reconstructed power spectrum ̂̃CTT

L (red) of
output lensed CMB generated using Lenspix.
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Figure 67: The lensed output map for the sample that we have been studying with
unlensed CMB realisation seed = 745.
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Figure 68: A zoomed section of the unlensed CMB temperature map from figure 63.
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Figure 69: Zoomed section of the lensed CMB temperature map from figure 67. Refer
to previous image for comparison.
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Biposh First Order Lensing
We use the harmonic basis Taylor expansion

Θ̃lm= Θlm +
∑
l1m1
l2m2

Θl2m2ϕl1m1 I
mm1m2
ll2l2

+
1

2

∑
l1m1
l2m2

∑
l3m3

ϕl1m1ϕl2m2Θl3m3J
mm1m2m3
ll1l2l3

+
1

6

∑
l1m1
l2m2
l3m3

∑
l4m4

ϕl1m1ϕl2m2ϕl3m3Θl4m4K
mm1m2m3m4
ll1l2l3l4

To get the lensed Biposhes

ALM
ll ′ |

obs
=
∑
mm′

⟨Θ̃lmΘ̃l ′m′⟩(−1)m
′CLM

lml ′−m′

= ALM
ll ′ |

S.I .
+ALM

ll ′ |
ϕ
+ALM

ll ′ |
ϕϕ

+ALM
ll ′ |(a)

ϕ2
+ALM

ll ′ |(b)
ϕ2

+ALM
ll ′ |(a)

ϕϕ2
+ALM

ll ′ |(b)
ϕ2ϕ

+ALM
ll ′ |(a)

ϕ3
+ALM

ll ′ |(b)
ϕ3

(69)
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Minimum Variance Estimator in Biposh

λ = 4wL
ll ′
CTT
l CTT

l ′

(KL
ll ′ |ϕ)2

(70)

wL
ll ′ =

(KL
ll ′ |ϕ)2

CTT
l CTT

l ′

/[∑
ll ′

(KL
ll ′ |ϕ)2

CTT
l CTT

l ′

]
(71)

N
(0)
L = 2

/[∑
ll ′

(KL
ll ′ |ϕ)2

CTT
l CTT

l ′

]
(72)
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