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Cosmological observables as random fields

Neyman & Scott 1957: “.. considerable progress and aesthetic gain may be
expected if determinism is abandoned and replaced by a frank probabilistic
treatment of cosmology. This requires the adoption of the view that the
Universe is a realization of a stochastic process which is stationary in the
three (spatial) co-ordinates (cosmological principal) and possibly also
stationary in the fourth (time) co-ordinate (“perfect” cosmological principle).”

Quantum fluctuations during inflation (Mukhanov & Chibisov
1981): = primordial density fluctuations.

Physical interactions - evolve the primordial fields to what we observe.

Much of modern cosmology has been the study of the
statistics of density fluctuations.
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Overview of random fields
Field: f(x,t)
Probability distribution: P [f(xl), F(x2),...) f(xk)]
n-point correlation functions:
2ot i+ &(x1,5x2) = (1060 5a)
3-point fn — <f(x1)f(X2)f(X3)>

Gaussian field:

P[f(xl),f(xz), ...,f(xk)] — \/ﬁexp ( _ %FT 5711:),

F = (f(x1), f(x2), ..., f(xk))



Random fields in cosmology

Cosmological principle - Homogeneity and isotropy

e All positions and directions are equivalent.

e All n-point correlation functions depend only on the
spatial separations.

Assume ergodicity

The Universe corresponds to one realization of a random field.

Ensemble expectation <= Volume average.
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Random fields in cosmology - data and theory

Testing Theory:

© Fundamental assumptions

@ Theoretical framework - the equations - Einstein’s equations,
Boltzman equations for different matter components

@ Theoretical Parameters -

@ Nature of primordial fluctuations - gravity and quantum field
equations, nature of interactions

Need to construct good Statistics to compare data and theory.
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2-point function as a cosmological tool

Correlation function <= Power spectrum

Example - CMB angular power spectrum

Then 1
Cobs — - 2
C T et 2 laem|

giheory / dk K Ay (k,to)|? P(k) —> O <QHOT)
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2-point function as a cosmological tool
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Beyond 2-point function

Much more information in observed data than revealed
by 2-point function. Timely to expand our toolset.

Options:
@ Higher order n-point functions

» Non-Gaussian fields: higher n-point functions contain
independent information.
But: expensive to compute and analyze.

Require: efficient algorithms that can improve the
computation time
E.g. Philcoxa & Slepian, arxiv:2106.10278

© Alternative: geometry and topology of random
fields
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Geometry and topology of random fields

Morse theory - from differentiable functions to topology

— Connectivity, Extrema counts - maximas, minimas,
saddles

Integral geometry - Minkowski tensors

— Area, perimeter, counts, Euler characteristic,
Betti numbers, anisotropy, alignment, total curvature
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Excursion sets of random fields
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Rich geometrical and topological structure
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Minkowski tensors in 2D

Wyt = / 7™ da,
A

wirt = / M a" ds,
C

wyr" = TN Kk ds

xk = Curvature
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Minkowski tensors in 2D

Dim Rank O Rank 1 Rank 2
Translation| Translation
covariant invariant
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Physical meaning

(a) (b) (c)

RANK O

Wy = [da Area
Wy = [ds Perimeter
Wy = f k ds | Counts - Betti numbers, Euler characteristic

b = i K ds, bvzi/ K ds, g =b. — by.
2m Jo, 2 Jo
RANK 2, translation invariant
W' = [, F®nds =WoxI
W{) 2 = fc n ®nds Trace gives W1, 3 degrees of freedom.
Wy’= [, h@nrds | =WyxI

e 444 14 /30



Shape and alignment information

Eigenvalues of I/Vl0 2 give information of anisotropy and alignment.

< >

Calculate Wlo 2 for each curve. Calculate eigenvalues A1, Ay and take
ratio.
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Minkowski tensors for random fields

= 2f;1f;2f;12 - uf;21f;22 - f;22f;11

n = Vf,
IV f[?
02 l/A ) _1/ B 1
Wiyt = 1 nen ds = 1 Sda5(u V) Val M,
wo? = i/A@A ds = — [ das(f—v) ~ M
2T = oo nnms—%rsa V|Vf| ,
fa f~1f~2>
M= Ja Tk
<f;1f;2 ;22
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Minkowski tensors for (Gaussian isotropic fields

PC, Yogendran et al 2017

If f is Gaussian then f,; are also Gaussian fields.

The joint PDF of X = (f, f.1, f2, fi11, fi12, fi22) is given by the Gaussian form

1 1
Xp (—§XT2_1X) ,

—_—— ¢
V2mDetX

where X is the covariance matrix

P(X) =

Y =(XiX;)

For any statistic, B(X), the ensemble expectation is then

<B(X)> = /D[X]P(X)B
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Minkowski tensors for (Gaussian isotropic fields

PC, Yogendran et al 2017

Wo = %Erfc (I//\/i)

1
(Wf’2(1/)) x  —e V2% I x Area
Te

1
<W§'2(I/)> o< r—zzle_”z/2 X I X Area

Analytic expressions for Betti numbers and shape parameter
8 are NOT known as yet.
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Information content of Minkowski tensors

rc contains cosmological information of kinematic properties of universe.
Functional dependence on v gives information of the nature of the field.

Provides valuable shape and alignment information - clustering and filamentary na-
ture of fields.

Encodes information of time evolution of fields.

Caveats

Good signal to noise of observed data is crucial.

Data must have good resolution in order to resolve structures.
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Testing the Cosmological principle

e Look for direction dependence of the power spectrum.
E.g. BiPosh — Applied to CMB data.

Souradeep-+

e Measure dipole
E.g. Applied to quasar number counts.

Ellis & Baldwin 1984, Singhal 2011, Secrest et al 2021,...

e Galaxy cluster scaling relations

Migkas & Reiprich 2018, 2020 . . .

e Propose a new test based on

If the field is homogeneous and isotropic we can construct a geometric
object which is invariant under translations and rotations.

L ST



Measure of anisotropy - finite sampling effect

T = Trace
9 = \9i+a
Wwo? — <T+91 ng ) o = Lian1 2
92 g1 9 o
Ay g
= — ~ 1-
¢ Ao 27
© = orientation of the anisotropy.

g, « = coordinate independent measure of intrinsic anisotropy.
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Finite sampling - breaks isotropy

PC, Goyal, Yogendran & Appleby (2021)
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Finite sampling - breaks isotropy
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= The amplitudes of 7 and g exhibit power law scaling with smoothing.

= 04 increases linearly with smoothing scale.
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Representation of a random field as series of
ellipses

- O
Jo O -
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s = resolution parameter




Applications to PLANCK data



1. PLANCK temperature and E-mode data

Joby Kochappan et al., 2018; 2020

Temperature E-mode

100 GHz

—o— Observed

— Isotropic simulations
—— SMICA simulations

—— SMICA noise simulations

Conclusion : No statistically significant deviation from SI.
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2. PLANCK convergence map

TR = T™(A+d)

-

d(@, ¢) = v'ﬁ,q)

® is the Lensing potential.

Pic: He, Alam, Chen & Planck/ESA

D) = —2 /:* dy (XX;X> W (xA; o — X)

r=V2® = Convergence
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Planck convergence map - global analysis
Priya Goyal & PC 2021
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Planck convergence map - patch analysis

Conclusion

e Most anomalous patches have o higher than expected.
= Inaccurate instrument noise.

e 2 patches have a lower than expected.
= True departure from isotropy.
Further probe needed to isolate the cause.




Summary

e Increasing availability of observational data make it
timely to develop tools beyond power spectra for
extracting cosmological information.

¢ Geometry and topology of random fields open up diverse
new avenues for data analysis. Analytic predictions to a
large extent.

Examples — Minkowski tensors and Betti numbers.
e Constructed a test for statistical isotropy of the Planck

data. Identified sky regions that exhibit anomalous
behaviour.
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