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. CMB: λ ∼ 1 mm

. δT (θ, φ), Φ(θ, φ)

. Hydrogen: λ ≥ 21 cm

. δTB(θ, φ, z)

. Collapsed objects: < λ ∼ 500 nm <

. δρ(θ, φ, z)

. Galactic emissions: sub-mm to radio

. Isyn, Idust, ...
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Cosmological observables as random fields

Neyman & Scott 1957: “.. considerable progress and aesthetic gain may be
expected if determinism is abandoned and replaced by a frank probabilistic
treatment of cosmology. This requires the adoption of the view that the
Universe is a realization of a stochastic process which is stationary in the
three (spatial) co-ordinates (cosmological principal) and possibly also
stationary in the fourth (time) co-ordinate (“perfect” cosmological principle).”

Quantum fluctuations during inflation (Mukhanov & Chibisov
1981): ⇒ primordial density fluctuations.

Physical interactions - evolve the primordial fields to what we observe.

Much of modern cosmology has been the study of the
statistics of density fluctuations.
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Overview of random fields

Field: f(x, t)

Probability distribution: P
[
f(x1), f(x2), ..., f(xk)

]
n-point correlation functions:

2-point fn → ξ(x1,x2) ≡
〈
f(x1)f(x2)

〉
3-point fn →

〈
f(x1)f(x2)f(x3)

〉
...........

Gaussian field:

P
[
f(x1), f(x2), ..., f(xk)

]
=

1√
(2π)k Det ξ

exp

(
−

1

2
FT ξ−1F

)
,

F ≡ (f(x1), f(x2), ..., f(xk))
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Random fields in cosmology

Cosmological principle - Homogeneity and isotropy

• All positions and directions are equivalent.

• All n-point correlation functions depend only on the

spatial separations.

Assume ergodicity

The Universe corresponds to one realization of a random field.

Ensemble expectation ⇐⇒ Volume average.
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Random fields in cosmology - data and theory

Testing Theory:

1 Fundamental assumptions

2 Theoretical framework - the equations - Einstein’s equations,
Boltzman equations for different matter components

3 Theoretical Parameters -

4 Nature of primordial fluctuations - gravity and quantum field
equations, nature of interactions

5 ....

Need to construct good Statistics to compare data and theory.
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2-point function as a cosmological tool

Correlation function ⇐⇒ Power spectrum

Example - CMB angular power spectrum

T (n̂) = T0 + ∆T (n̂), ∆T (n̂) =
∑
`m

a`mY`m(n̂)

Then

Cobs
` =

1

`(`+ 1)

∑
|a`m|2

Ctheory
` ∼

∫
dk k2 |∆`(k, t0)|2 P (k) −→ Ctheory

`

(
Ωi, H0, τ, ...

)
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2-point function as a cosmological tool

Dobs
` ≡ `(`+ 1)C`
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Beyond 2-point function

Much more information in observed data than revealed
by 2-point function. Timely to expand our toolset.

Options:

1 Higher order n-point functions

I Non-Gaussian fields: higher n-point functions contain
independent information.
But: expensive to compute and analyze.

Require: efficient algorithms that can improve the
computation time

E.g. Philcoxa & Slepian, arxiv:2106.10278

2 Alternative: geometry and topology of random

fields
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Geometry and topology of random fields

Morse theory - from differentiable functions to topology

– Connectivity, Extrema counts - maximas, minimas,
saddles

Integral geometry - Minkowski tensors

– Area, perimeter, counts, Euler characteristic,
Betti numbers, anisotropy, alignment, total curvature

Pic: Oleg Alexandrov
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Excursion sets of random fields

2 dimensions:
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3 dimensions:

3D picture: R. Adler

Rich geometrical and topological structure
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Minkowski tensors in 2D

Tn

Wm
0 =

∫
A
~rm da,

Wm,n
1 =

∫
C
~rm ⊗ n̂n ds,

Wm,n
2 =

∫
C
~rm ⊗ n̂n κ ds

κ = Curvature
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Minkowski tensors in 2D

Dim Rank 0 Rank 1 Rank 2

Translation

covariant

Translation

invariant

4
– – W 2,0

0 –

3
– W 1,0

0 W 2,0
1 –

2
W0 W 1,0

1 W 2,0
2 W 1,1

1

1
W1

���W 0,1
1 ,

W 1,0
2 W 0,2

1 , W 1,1
2

0
W2

�
��W 0,1
2 ,

– W 0,2
2
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Physical meaning

RANK 0

W0 =
∫

da Area

W1 =
∫

ds Perimeter

W2 =
∫
κds Counts - Betti numbers, Euler characteristic

bc ≡
1

2π

∫
C+

κds, bv ≡
1

2π

∫
C−

κds, g = bc − bv.

RANK 2, translation invariant

W 1,1
1 =

∫
C ~r ⊗ n̂ ds = W0 × I

W 0,2
1 =

∫
C n̂ ⊗ n̂ ds Trace gives W1, 3 degrees of freedom.

W 0,2
2 =

∫
C n̂ ⊗ n̂ κ ds = W2 × I

14 / 30



Shape and alignment information

Eigenvalues of W 0,2
1 give information of anisotropy and alignment.

Calculate W 0,2
1 for each curve. Calculate eigenvalues λ1, λ2 and take

ratio.

β ≡ λ1

λ2

Sum W 0,2
1 for all curves. Calculate eigenvalues Λ1,Λ2 and take ratio.

α ≡ Λ1

Λ2
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Minkowski tensors for random fields

~n = ∇f, κ =
2f;1f;2f;12 − uf2;1f;22 − f2;2f;11

|∇f |3
.

W 0,2
1 =

1

4

∫
n̂⊗ n̂ ds =

1

4

∫
S

da δ(u− ν)
1

|∇u|
M,

W 0,2
2 =

1

2π

∫
n̂⊗ n̂ κ ds =

1

2π

∫
S

da δ(f − ν)
κ

|∇f |
M,

M =

(
f2;1 f;1 f;2

f;1 f;2 f2;2

)
.
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Minkowski tensors for Gaussian isotropic fields
PC, Yogendran et al 2017

If f is Gaussian then f;i are also Gaussian fields.

The joint PDF of X ≡ (f, f;1, f;2, f;11, f;12, f;22) is given by the Gaussian form

P (X) =
1√

2π DetΣ
exp

(
−1

2
XTΣ−1X

)
,

where Σ is the covariance matrix

Σ = 〈XiXj〉

For any statistic, B(X), the ensemble expectation is then〈
B(X)

〉
=

∫
D[X]P (X)B
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Minkowski tensors for Gaussian isotropic fields
PC, Yogendran et al 2017

W0 =
1

2
Erfc

(
ν/
√

2
)

〈W 0,2
1 (ν)〉 ∝

1

rc
e−ν

2/2 × I ×Area

〈W 0,2
2 (ν)〉 ∝

1

r2c
νe−ν

2/2 × I ×Area

rc =
σ0

σ1

−4 −3 −2 −1 0 1 2 3 4

ν
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Analytic expressions for Betti numbers and shape parameter
β are NOT known as yet.
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Information content of Minkowski tensors

rc contains cosmological information of kinematic properties of universe.

Functional dependence on ν gives information of the nature of the field.

Provides valuable shape and alignment information - clustering and filamentary na-
ture of fields.

Encodes information of time evolution of fields.

Caveats

Good signal to noise of observed data is crucial.

Data must have good resolution in order to resolve structures.
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Testing the Cosmological principle

• Look for direction dependence of the power spectrum.
E.g. BiPosh −→ Applied to CMB data.

Souradeep+

• Measure dipole
E.g. Applied to quasar number counts.

Ellis & Baldwin 1984, Singhal 2011, Secrest et al 2021,...

• Galaxy cluster scaling relations

Migkas & Reiprich 2018, 2020 . . .

• Propose a new test based on

If the field is homogeneous and isotropic we can construct a geometric
object which is invariant under translations and rotations.
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Measure of anisotropy - finite sampling effect

W 0,2
2 =

(
τ + g1 g2

g2 τ − g1

)
τ = Trace

g =
√
g2

1 + g2
2

ϕ =
1

2
tan−1 g2

g1

α ≡ Λ1

Λ2
' 1− g

2τ

ϕ ⇒ orientation of the anisotropy.

g, α ⇒ coordinate independent measure of intrinsic anisotropy.
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Finite sampling - breaks isotropy

PC, Goyal, Yogendran & Appleby (2021)

〈|g1(ν)|〉 = Ag1e
−ν2/2σ2

g1

〈|g2(ν)|〉 = Ag2e
−ν2/2σ2

g1

〈g(ν)〉 = Age
−ν2/2σ2

g

〈τ(ν)〉 = Aτe
−ν2/2σ2

τ

〈α(ν)〉 ' 1− Ag
Aτ

eν
2/2∆g
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Finite sampling - breaks isotropy

⇒ The amplitudes of τ and g exhibit power law scaling with smoothing.

⇒ σg increases linearly with smoothing scale.
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Representation of a random field as series of
ellipses

s

21−2 −1 0

ν

s = resolution parameter
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Applications to PLANCK data
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1. PLANCK temperature and E-mode data
Joby Kochappan et al., 2018; 2020

Temperature E-mode

Conclusion : No statistically significant deviation from SI.
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2. PLANCK convergence map

Pic: He, Alam, Chen & Planck/ESA

TL(n̂′) = TUL(n̂+ ~d )

~d(θ, φ) = ∇n̂Φ

Φ is the Lensing potential.

Φ(n̂) = −2

∫ χ∗

0

dχ

(
χ∗ − χ
χχ∗

)
ψ (χn̂; η0 − χ)

κ = ∇2Φ = Convergence
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Planck convergence map - global analysis
Priya Goyal & PC 2021
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Planck convergence map - patch analysis

Conclusion

• Most anomalous patches have α higher than expected.
⇒ Inaccurate instrument noise.

• 2 patches have α lower than expected.
⇒ True departure from isotropy.
Further probe needed to isolate the cause.
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Summary

• Increasing availability of observational data make it
timely to develop tools beyond power spectra for
extracting cosmological information.

• Geometry and topology of random fields open up diverse
new avenues for data analysis. Analytic predictions to a
large extent.

Examples → Minkowski tensors and Betti numbers.

• Constructed a test for statistical isotropy of the Planck
data. Identified sky regions that exhibit anomalous
behaviour.
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