CSL as a plausible mechanism for quantum to classical transition of primordial perturbations PRD 88 (2013) 085020

Suratna Das

TIFR, Mumbai, India

$30^{\rm th}$ January, 2014

Collaborators : Kinjalk Lochan, Satyabrata Sahu, Angelo Bassi & T. P. Singh

ヘロン ヘヨン ヘヨン ヘヨン

Summary

The Problem Qauntum to Classical transition problem in Cosmological context & in Laboratory System Decoherence as a solution (?) Issues with decoherence Continuous Spontaneous Localization Model : In brief Observational aspects of inflation

Plausible Solutions with Collapse models Schrödinger representation of inflationary perturbation theory CSL-like modification with constant γ CSL-like modification with scale-dependent γ

Conclusion

・ロン ・回と ・ヨン ・ヨン

Q-C problem : in Cosmology & in Laboratory Decoherence as a solution (?) Issues with decoherence CSL : in brief Inflation: Observational aspects

Outline

The Problem

Qauntum to Classical transition problem in Cosmological context & in Laboratory System

Decoherence as a solution (?)

Issues with decoherence

Continuous Spontaneous Localization Model : In brief

Observational aspects of inflation

Plausible Solutions with Collapse models Schrödinger representation of inflationary perturbation theory CSL-like modification with constant γ CSL-like modification with scale-dependent γ

Conclusion

イロト イヨト イヨト イヨト

Q-C problem : in Cosmology & in Laboratory Decoherence as a solution (?) Issues with decoherence CSL : in brief

Inflation: Observational aspects

Evolutionary history of our universe

Q-C problem : in Cosmology & in Laboratory Decoherence as a solution (?) Issues with decoherence CSL : in brief Inflation: Observational aspects

From theoretical point of view

・ロン ・回と ・ヨン ・ヨン

E

Q-C problem : in Cosmology & in Laboratory Decoherence as a solution (?) Issues with decoherence CSL : in brief Inflation: Observational aspects

From theoretical point of view

Inflation :

- $T_{\mu\nu} \Longrightarrow$ Scalar field \Longrightarrow *Inflaton*
- Inflaton \implies Quantum field $\implies \phi_0(t) + \delta \phi(t, \mathbf{x})$
- Perturbations in $T_{\mu\nu} \Longrightarrow \underline{\text{Quantum}}$ perturbations in $g_{\mu\nu}$ $\implies g^{(0)}_{\mu\nu} + \delta g_{\mu\nu}$

・ロン ・四 ・ ・ ヨン ・ ヨン

Q-C problem : in Cosmology & in Laboratory Decoherence as a solution (?) Issues with decoherence CSL : in brief Inflation: Observational aspects

Inflation & the quantum to classical transition problem

・ロト ・回ト ・ヨト

.⊒ .⊳

Q-C problem : in Cosmology & in Laboratory Decoherence as a solution (?) Issues with decoherence CSL : in brief Inflation: Observational aspects

Inflation & the quantum to classical transition problem

Perturbations entering RD : $\delta G_{\mu\nu} = 8\pi \delta T^{\rm Radiation}_{\mu\nu}$

・ロト ・回ト ・ヨト

э

Q-C problem : in Cosmology & in Laboratory Decoherence as a solution (?) Issues with decoherence CSL : in brief Inflation: Observational aspects

Inflation & the quantum to classical transition problem

S. Das

Perturbations entering RD : $\delta G_{\mu\nu} = 8\pi \delta T_{\mu\nu}^{\text{Radiation}}$

Perturbations entering MD : $\delta G_{\mu\nu} = 8\pi \delta T^{Matter}_{\mu\nu}$

Inflation with 'CSL' modifications

Q-C problem : in Cosmology & in Laboratory Decoherence as a solution (?) Issues with decoherence CSL : in brief Inflation: Observational aspects

The Quantum World

$$H(t) | \psi(t) \rangle = i\hbar \frac{d}{dt} | \psi(t) \rangle \qquad |\Psi\rangle = \frac{| \chi\rangle + |\psi\rangle}{\sqrt{2}}$$

▲□▶ ▲圖▶ ▲≧▶ ▲≧▶

Э

Q-C problem : in Cosmology & in Laboratory Decoherence as a solution (?) Issues with decoherence CSL : in brief Inflation: Observational aspects

The Quantum World

イロト イヨト イヨト イヨト

Q-C problem : in Cosmology & in Laboratory Decoherence as a solution (?) Issues with decoherence CSL : in brief Inflation: Observational aspects

Outline

The Problem

Qauntum to Classical transition problem in Cosmological context & in Laboratory System

Decoherence as a solution (?)

Issues with decoherence

Continuous Spontaneous Localization Model : In brief Observational aspects of inflation

Plausible Solutions with Collapse models

Schrödinger representation of inflationary perturbation theory CSL-like modification with constant γ CSL-like modification with scale-dependent γ

Conclusion

イロト イヨト イヨト イヨト

Q-C problem : in Cosmology & in Laboratory Decoherence as a solution (?) Issues with decoherence CSL : in brief Inflation: Observational aspects

Decoherence in laboratory system

- Open quantum systems → treats the effects of an uncontrollable <u>environment</u> on the quantum evolution
- Interactions between system and its environment → suppression of interference between observable eigenstates

Q-C problem : in Cosmology & in Laboratory Decoherence as a solution (?) Issues with decoherence CSL : in brief Inflation: Observational aspects

Decoherence in laboratory system

- Open quantum systems —> treats the effects of an uncontrollable <u>environment</u> on the quantum evolution
- Interactions between system and its environment → suppression of interference between observable eigenstates

イロト イヨト イヨト イヨト

Q-C problem : in Cosmology & in Laboratory Decoherence as a solution (?) Issues with decoherence CSL : in brief Inflation: Observational aspects

Many Worlds Interpretation for single outcome

Decohered alternatives co-exist in different branches of the Universe

 $\Psi = c_1\psi_1A_1O_1 + c_2\psi_2A_2O_2$

Q-C problem : in Cosmology & in Laboratory Decoherence as a solution (?) Issues with decoherence CSL : in brief Inflation: Observational aspects

Decoherence in Cosmological context

Particles : $[x, p] = i\hbar$ Fields : $[\phi, \pi] = i$

・ロト ・回 ・ ・ ヨ ・ ・ ヨ ・

Q-C problem : in Cosmology & in Laboratory Decoherence as a solution (?) Issues with decoherence CSL : in brief Inflation: Observational aspects

Decoherence in Cosmological context

Particles : $[x, p] = i\hbar$ Fields : $[\phi, \pi] = i$

Inflation :

Squeezed in momentum direction

Squeezed states : Quantum but indistinguishable from classical stochastic process

Decoherence without decoherence

イロト イヨト イヨト イヨト

Q-C problem : in Cosmology & in Laboratory Decoherence as a solution (?) Issues with decoherence CSL : in brief Inflation: Observational aspects

Decoherence in Cosmological context

- Later on → even if the classical and quantum expectation values are indistinguishable → the squeezed states are a quantum superposition of all possible field amplitudes → Not an ensemble of stochastically distributed classical values
- Decoherence suppresses the interference between different members of pointer basis → Many World Interpretation justifies the single outcome of our observed universe

< ロ > (同 > (三 > (三 >))

Q-C problem : in Cosmology & in Laboratory Decoherence as a solution (?) Issues with decoherence CSL : in brief Inflation: Observational aspects

Outline

The Problem

Qauntum to Classical transition problem in Cosmological context & in Laboratory System

Decoherence as a solution (?)

Issues with decoherence

Continuous Spontaneous Localization Model : In brief Observational aspects of inflation

Plausible Solutions with Collapse models

Schrödinger representation of inflationary perturbation theory CSL-like modification with constant γ CSL-like modification with scale-dependent γ

Conclusion

イロト イヨト イヨト イヨト

Q-C problem : in Cosmology & in Laboratory Decoherence as a solution (?) Issues with decoherence CSL : in brief Inflation: Observational aspects

Issues with decoherence in cosmological context

- Decoherence by construction requires an environment ⇒ Cosmology is a closed system analysis
- Small scale modes act as environment distinguish between large and small scale modes during inflation
- Many-Worlds Interpretation has its own problem as it is not observationally falsifiable
- Also the knowledge of an observer is required in this setup
 ⇒ But the observers ('We, the human beings') are the end
 products of the evolutionary history ⇒ classical structure
 formation starts much before any observer appears in the
 universe

・ロン ・回と ・ヨン・

Q-C problem : in Cosmology & in Laboratory Decoherence as a solution (?) Issues with decoherence CSL : in brief Inflation: Observational aspects

Issues with decoherence in cosmological context

- Decoherence by construction requires an environment ⇒ Cosmology is a closed system analysis
- Small scale modes act as environment distinguish between large and small scale modes during inflation
- Many-Worlds Interpretation has its own problem as it is not observationally falsifiable
- Also the knowledge of an observer is required in this setup
 ⇒ But the observers ('We, the human beings') are the end
 products of the evolutionary history ⇒ classical structure
 formation starts much before any observer appears in the
 universe

So let us try 'Collapse models of Quantum mechanics'

・ロト ・回ト ・ヨト

Q-C problem : in Cosmology & in Laboratory Decoherence as a solution (?) Issues with decoherence CSL : in brief Inflation: Observational aspects

Outline

The Problem

Qauntum to Classical transition problem in Cosmological context & in Laboratory System

Decoherence as a solution (?)

Issues with decoherence

Continuous Spontaneous Localization Model : In brief Observational aspects of inflation

Plausible Solutions with Collapse models

Schrödinger representation of inflationary perturbation theory

CSL-like modification with constant γ

CSL-like modification with scale-dependent $\boldsymbol{\gamma}$

Conclusion

イロト イヨト イヨト イヨト

Q-C problem : in Cosmology & in Laboratory Decoherence as a solution (?) Issues with decoherence CSL : in brief Inflation: Observational aspects

Continuous Spontaneous Localization : in brief

• Modifies Schrödinger equation by adding non-linear stochastic terms :

$$d\psi_t = \left[-\frac{i}{\hbar}Hdt + \frac{\sqrt{\gamma}}{m_0}\int d\mathbf{x}(M(\mathbf{x}) - \langle M(\mathbf{x})\rangle_t)dW_t(\mathbf{x}) - \frac{\gamma}{2m_0^2}\int d\mathbf{x}\left(M(\mathbf{x}) - \langle M(\mathbf{x})\rangle_t\right)^2dt\right]$$

• Non-linear terms breaks the superposition of wavefunctions

・ロト ・回 ・ ・ ヨ ・ ・ ヨ ・

Q-C problem : in Cosmology & in Laboratory Decoherence as a solution (?) Issues with decoherence CSL : in brief Inflation: Observational aspects

Continuous Spontaneous Localization : in brief

• Modifies Schrödinger equation by adding non-linear stochastic terms :

$$d\psi_t = \left[-\frac{i}{\hbar}Hdt + \frac{\sqrt{\gamma}}{m_0}\int d\mathbf{x}(M(\mathbf{x}) - \langle M(\mathbf{x})\rangle_t)dW_t(\mathbf{x}) - \frac{\gamma}{2m_0^2}\int d\mathbf{x}\left(M(\mathbf{x}) - \langle M(\mathbf{x})\rangle_t\right)^2dt\right]$$

- Non-linear terms breaks the superposition of wavefunctions
- Amplification mechanism :

$$\gamma(m) = \gamma_0 \left(\frac{m}{m_N}\right)^{\beta}, \qquad \gamma(m) = n^2 \gamma_0 \left(\frac{m}{m_N}\right)^{\beta}$$

・ロト ・回 ・ ・ ヨ ・ ・ ヨ ・

Q-C problem : in Cosmology & in Laboratory Decoherence as a solution (?) Issues with decoherence CSL : in brief Inflation: Observational aspects

Continuous Spontaneous Localization : in brief

• Modifies Schrödinger equation by adding non-linear stochastic terms :

$$d\psi_t = \left[-\frac{i}{\hbar}Hdt + \frac{\sqrt{\gamma}}{m_0}\int d\mathbf{x}(M(\mathbf{x}) - \langle M(\mathbf{x})\rangle_t)dW_t(\mathbf{x}) - \frac{\gamma}{2m_0^2}\int d\mathbf{x}\left(M(\mathbf{x}) - \langle M(\mathbf{x})\rangle_t\right)^2dt\right]$$

- Non-linear terms breaks the superposition of wavefunctions
- Amplification mechanism :

$$\gamma(m) = \gamma_0 \left(\frac{m}{m_N}\right)^{\beta}, \qquad \gamma(m) = n^2 \gamma_0 \left(\frac{m}{m_N}\right)^{\beta}$$

 $\bullet\,$ Hamiltonian not conserved due to non-linear terms \Longrightarrow Non-conservation of energy

$$\langle E
angle = rac{3\gamma lpha \hbar^2}{4m} t$$

・ロト ・回ト ・ヨト ・ヨト

Q-C problem : in Cosmology & in Laboratory Decoherence as a solution (?) Issues with decoherence CSL : in brief Inflation: Observational aspects

Continuous Spontaneous Localization : in brief

• Modifies Schrödinger equation by adding non-linear stochastic terms :

$$d\psi_t = \left[-\frac{i}{\hbar}Hdt + \frac{\sqrt{\gamma}}{m_0}\int d\mathbf{x}(M(\mathbf{x}) - \langle M(\mathbf{x})\rangle_t)dW_t(\mathbf{x}) - \frac{\gamma}{2m_0^2}\int d\mathbf{x}\left(M(\mathbf{x}) - \langle M(\mathbf{x})\rangle_t\right)^2dt\right]$$

- Non-linear terms breaks the superposition of wavefunctions
- Amplification mechanism :

$$\gamma(m) = \gamma_0 \left(\frac{m}{m_N}\right)^{\beta}, \qquad \gamma(m) = n^2 \gamma_0 \left(\frac{m}{m_N}\right)^{\beta}$$

 $\bullet\,$ Hamiltonian not conserved due to non-linear terms \Longrightarrow Non-conservation of energy

$$\langle E \rangle = \frac{3\gamma \alpha \hbar^2}{4m} t$$

• Relativistic (Field theoretic) version of CSL is yet to be developed

Q-C problem : in Cosmology & in Laboratory Decoherence as a solution (?) Issues with decoherence CSL : in brief Inflation: Observational aspects

Outline

The Problem

Qauntum to Classical transition problem in Cosmological context & in Laboratory System Decoherence as a solution (?) Issues with decoherence Continuous Spontaneous Localization Model : In brief Observational aspects of inflation

Plausible Solutions with Collapse models

Schrödinger representation of inflationary perturbation theory CSL-like modification with constant γ CSL-like modification with scale-dependent γ

Conclusion

イロト イヨト イヨト イヨト

Q-C problem : in Cosmology & in Laboratory Decoherence as a solution (?) Issues with decoherence CSL : in brief Inflation: Observational aspects

Observational aspects of inflation

Scale Invariance of power spectrum :

- \bullet Power spectrum \longrightarrow Two-point correlation function of field fluctuations
- Recall \longrightarrow Einstein equations $\longrightarrow \delta T_{\mu\nu} \Longrightarrow \delta G_{\mu\nu}$
- During Inflation $\longrightarrow \delta T_{\mu\nu} = \delta \phi \longrightarrow \delta g_{\mu\nu}$:
 - Scalar perturbations_: Φ
 - Vector perturbations
 - Tensor perturbations
- Construct Gauge-invariant scalar quantity \longrightarrow Comoving Curvature perturbations $\mathcal{R} \longrightarrow$ made up of $\delta \phi$ and Φ

・ロト ・回ト ・ヨト ・ヨト

Q-C problem : in Cosmology & in Laboratory Decoherence as a solution (?) Issues with decoherence CSL : in brief Inflation: Observational aspects

Observational aspects of inflation

•
$$\mathcal{P}_{\mathcal{R}}(k)\equivrac{k^3}{2\pi^2}\left<\mathcal{R}(k)\mathcal{R}(k)
ight>=A_{s}k^{n_{s}-1}$$

- $\langle \mathcal{R}(k) \mathcal{R}(k) \rangle \propto \left\langle \frac{\delta T}{T} \frac{\delta T}{T} \right\rangle \Big|_{\text{CMB}}$
- Experiments show $n_s \approx 1$ (WMAP : 0.971 \pm 0.010, PLANCK : 0.9635 \pm 0.0094)
- Any modification to inflationary dynamics should respect scale-invariance

3.0

Q-C problem : in Cosmology & in Laboratory Decoherence as a solution (?) Issues with decoherence CSL : in brief Inflation: Observational aspects

6000

5000

4000 34 [HK

3000 (1+1)C1

2000

1000

10 100

Angular scale 0.5

500

Multipole moment (

0.2°

1000

1500

WMAP

Acbai

Boomerand

Observational aspects of inflation

•
$$\mathcal{P}_{\mathcal{R}}(k)\equivrac{k^3}{2\pi^2}\left<\mathcal{R}(k)\mathcal{R}(k)\right>=A_sk^{n_s-2}$$

- $\langle \mathcal{R}(k) \mathcal{R}(k) \rangle \propto \left\langle \frac{\delta T}{T} \frac{\delta T}{T} \right\rangle \Big|_{CMB}$
- Experiments show $n_{\rm s} \approx 1$ (WMAP : 0.971 ± 0.010 . PLANCK : $0.9635 \pm 0.0094)$
- Any modification to inflationary dynamics should respect scale-invariance

Q-C problem : in Cosmology & in Laboratory Decoherence as a solution (?) Issues with decoherence CSL : in brief Inflation: Observational aspects

More on phase coherence ...

S. Dodelson, AIP Conf. Proc. 689, 184 (2003)

Inflation predicts that modes do not evolve on super-horizon scales and re-enter the horizon with the same phase for a particular wave number \longrightarrow All the modes contributing to the First peak undergo half an oscillation till last scattering surface (LSS) and so they are all at their peak \longrightarrow amplitude is the sum over all of them

Image: A math a math

Q-C problem : in Cosmology & in Laboratory Decoherence as a solution (?) Issues with decoherence CSL : in brief Inflation: Observational aspects

More on phase coherence ...

S. Dodelson, AIP Conf. Proc. 689, 184 (2003)

Inflation predicts that modes do not evolve on super-horizon scales and re-enter the horizon with the same phase for a particular wave number \longrightarrow All the modes contributing to the First peak undergo half an oscillation till last scattering surface (LSS) and so they are all at their peak \longrightarrow amplitude is the sum over all of them

If there is no phase coherence then at re-entry different modes will be at random phases at LSS and the First peak will be washed out

Image: A math a math

Schrödinger picture analysis CSL-like modification with constant γ CSL-like modification with scale-dependent γ

Outline

The Problem

Qauntum to Classical transition problem in Cosmological context & in Laboratory System Decoherence as a solution (?) Issues with decoherence Continuous Spontaneous Localization Model : In brief Observational aspects of inflation

Plausible Solutions with Collapse models Schrödinger representation of inflationary perturbation theory CSL-like modification with constant γ CSL-like modification with scale-dependent γ

Conclusion

イロト イヨト イヨト イヨト

Schrödinger picture analysis CSL-like modification with constant γ CSL-like modification with scale-dependent γ

Schrödinger picture analysis

 Primordial scalar perturbations in terms of Mukhanov-Sasaki variable :

$$\zeta(au, \mathbf{x}) = \mathbf{a} \left[\delta \varphi^{\mathrm{gi}} + \varphi'_0 \frac{\Phi_B}{\mathcal{H}} \right]$$

• Convenient as it is related to comoving curvature perturbation

$$\zeta(au, \mathbf{x}) = rac{\mathbf{a}arphi_0'}{\mathcal{H}} \mathcal{R}(au, \mathbf{x})$$

 Recall *R* freezes on super-Hubble scales → So we need not to bother about their evolution once they are superhorizon

 $\begin{array}{l} \mbox{Schrödinger picture analysis} \\ \mbox{CSL-like modification with constant } \gamma \\ \mbox{CSL-like modification with scale-dependent } \gamma \\ \end{array}$

Schrödinger picture ...

• Quantum state of the system is described by wavefunctional $\Psi[\zeta_{\bf k}] \longrightarrow$ Satisfy the functional Schrödinger equation

$$\dot{\boldsymbol{\theta}}\frac{\partial \boldsymbol{\Psi}_{\boldsymbol{k}}^{\mathrm{R},\mathrm{I}}}{\partial \boldsymbol{\tau}} = \hat{\mathcal{H}}_{\boldsymbol{k}}^{\mathrm{R},\mathrm{I}}\boldsymbol{\Psi}_{\boldsymbol{k}}^{\mathrm{R},\mathrm{I}}$$

• Hamiltonian that of harmonic oscillator

$$\hat{\mathcal{H}}_{\mathbf{k}}^{\mathrm{R,I}} = -\frac{1}{2} \frac{\partial^2}{\partial \left(\zeta_{\mathbf{k}}^{\mathrm{R,I}}\right)^2} + \frac{1}{2} \omega^2 \left(\zeta_{\mathbf{k}}^{\mathrm{R,I}}\right)^2, \qquad \omega^2 \equiv k^2 - \frac{a''}{a}$$

• The solution to the functional Schrödinger equation is a functional Gaussian state

$$\Psi_{\mathbf{k}}^{\mathrm{R},\mathrm{I}}\left[\tau,\zeta_{\mathbf{k}}^{\mathrm{R},\mathrm{I}}\right] = \sqrt{N_{k}(\tau)} \exp\left(-\frac{\Omega_{k}(\tau)}{2} \left(\zeta_{\mathbf{k}}^{\mathrm{R},\mathrm{I}}\right)^{2}\right)$$

 $\begin{array}{l} \mbox{Schrödinger picture analysis} \\ \mbox{CSL-like modification with constant } \gamma \\ \mbox{CSL-like modification with scale-dependent } \gamma \\ \end{array}$

Wigner function and coherent states

- $\bullet~$ In QM \longrightarrow Wigner function is a phase space probability distribution of a state
- \bullet Coherent states \longrightarrow dynamics most closely resembles the oscillating behaviour of a classical harmonic oscillator

Schrödinger picture analysis CSL-like modification with constant γ CSL-like modification with scale-dependent γ

Wigner function and squeezing

• Wigner function recognizes the correlation between position (in this case the field amplitude) and momentum (canonical to the field in this case)

$$\mathcal{W}\left(\zeta_{\mathbf{k}}^{\mathrm{R}},\zeta_{\mathbf{k}}^{\mathrm{I}},\boldsymbol{p}_{\mathbf{k}}^{\mathrm{R}},\boldsymbol{p}_{\mathbf{k}}^{\mathrm{I}}\right) = \frac{1}{(2\pi)^{2}} \int dx dy \Psi^{*}\left(\zeta_{\mathbf{k}}^{\mathrm{R}}-\frac{x}{2},\zeta_{\mathbf{k}}^{\mathrm{I}}-\frac{y}{2}\right) e^{-ip_{\mathbf{k}}^{\mathrm{R}}x-ip_{\mathbf{k}}^{\mathrm{I}}y} \Psi\left(\zeta_{\mathbf{k}}^{\mathrm{R}}+\frac{x}{2},\zeta_{\mathbf{k}}^{\mathrm{I}}+\frac{y}{2}\right) \\ = \frac{1}{\pi^{2}} e^{-\operatorname{Re}\Omega_{k}\left(\zeta_{\mathbf{k}}^{\mathrm{R}^{2}}+\zeta_{\mathbf{k}}^{\mathrm{I}^{2}}\right)} e^{-\frac{\left(p_{\mathbf{k}}^{\mathrm{R}}+\operatorname{Im}\Omega_{k}\zeta_{\mathbf{k}}^{\mathrm{R}}\right)^{2}}{\operatorname{Re}\Omega_{k}}} e^{-\frac{\left(p_{\mathbf{k}}^{\mathrm{I}}+\operatorname{Im}\Omega_{k}\zeta_{\mathbf{k}}^{\mathrm{I}}\right)^{2}}{\operatorname{Re}\Omega_{k}}}$$

• During Inflation \implies on superhorizon scales $\operatorname{Re} \Omega_k \to 0$

$$\mathcal{W}\left(\zeta_{\mathbf{k}}^{\mathrm{R}},\zeta_{\mathbf{k}}^{\mathrm{I}},\boldsymbol{p}_{\mathbf{k}}^{\mathrm{R}},\boldsymbol{p}_{\mathbf{k}}^{\mathrm{I}}\right) \rightarrow \frac{\operatorname{Re}\Omega_{k}}{\pi} e^{-\operatorname{Re}\Omega_{k}\left(\zeta_{\mathbf{k}}^{\mathrm{R}^{2}}+\zeta_{\mathbf{k}}^{\mathrm{I}^{2}}\right)} \delta\left(\boldsymbol{p}_{\mathbf{k}}^{\mathrm{R}}\right) \delta\left(\boldsymbol{p}_{\mathbf{k}}^{\mathrm{I}}\right)$$

・ロン ・四 ・ ・ ヨン ・ ヨン

Schrödinger picture analysis CSL-like modification with constant γ CSL-like modification with scale-dependent γ

Wigner function and squeezing

• Wigner function recognizes the correlation between position (in this case the field amplitude) and momentum (canonical to the field in this case)

$$\mathcal{W}\left(\zeta_{\mathbf{k}}^{\mathrm{R}},\zeta_{\mathbf{k}}^{\mathrm{I}},\boldsymbol{p}_{\mathbf{k}}^{\mathrm{R}},\boldsymbol{p}_{\mathbf{k}}^{\mathrm{I}}\right) = \frac{1}{(2\pi)^{2}} \int dx dy \Psi^{*}\left(\zeta_{\mathbf{k}}^{\mathrm{R}}-\frac{x}{2},\zeta_{\mathbf{k}}^{\mathrm{I}}-\frac{y}{2}\right) e^{-ip_{\mathbf{k}}^{\mathrm{R}}x-ip_{\mathbf{k}}^{\mathrm{I}}y} \Psi\left(\zeta_{\mathbf{k}}^{\mathrm{R}}+\frac{x}{2},\zeta_{\mathbf{k}}^{\mathrm{I}}+\frac{y}{2}\right) \\ = \frac{1}{\pi^{2}} e^{-\operatorname{Re}\Omega_{k}\left(\zeta_{\mathbf{k}}^{\mathrm{R}^{2}}+\zeta_{\mathbf{k}}^{\mathrm{I}^{2}}\right)} e^{-\frac{\left(p_{\mathbf{k}}^{\mathrm{R}}+\operatorname{Im}\Omega_{k}\zeta_{\mathbf{k}}^{\mathrm{R}}\right)^{2}}{\operatorname{Re}\Omega_{k}}} e^{-\frac{\left(p_{\mathbf{k}}^{\mathrm{I}}+\operatorname{Im}\Omega_{k}\zeta_{\mathbf{k}}^{\mathrm{I}}\right)^{2}}{\operatorname{Re}\Omega_{k}}}$$

• During Inflation \implies on superhorizon scales $\operatorname{Re} \Omega_k \to 0$

$$\mathcal{W}\left(\zeta_{\mathbf{k}}^{\mathrm{R}},\zeta_{\mathbf{k}}^{\mathrm{I}},\boldsymbol{p}_{\mathbf{k}}^{\mathrm{R}},\boldsymbol{p}_{\mathbf{k}}^{\mathrm{I}}\right) \rightarrow \frac{\operatorname{Re}\Omega_{k}}{\pi}e^{-\operatorname{Re}\Omega_{k}\left(\zeta_{\mathbf{k}}^{\mathrm{R}^{2}}+\zeta_{\mathbf{k}}^{\mathrm{I}^{2}}\right)}\delta\left(\boldsymbol{p}_{\mathbf{k}}^{\mathrm{R}}\right)\delta\left(\boldsymbol{p}_{\mathbf{k}}^{\mathrm{I}}\right)$$

• The power spectrum :

$$\mathcal{P}_{\mathcal{R}}(k) = \frac{k^3}{8\pi^2 \epsilon M_{\rm Pl}^2} \frac{1}{a^2 {\rm Re}\Omega_k}$$

Schrödinger picture analysis CSL-like modification with constant γ CSL-like modification with scale-dependent γ

Wigner function and squeezing

Highly squeezed in momentum direction and spread in field direction

(a)

Observation shows classicality in field direction \longrightarrow Expect 'collapse models' to squeeze the modes in field direction

Schrödinger picture analysis CSL-like modification with constant γ CSL-like modification with scale-dependent γ

Outline

The Problem

Qauntum to Classical transition problem in Cosmological context & in Laboratory System Decoherence as a solution (?) Issues with decoherence Continuous Spontaneous Localization Model : In brief Observational aspects of inflation

Plausible Solutions with Collapse models

Schrödinger representation of inflationary perturbation theory CSL-like modification with constant γ CSL-like modification with scale-dependent γ

Conclusion

イロト イヨト イヨト イヨト

CSL-like modification with constant γ

• <u>Recall</u> : Functional Schrödiner equation in Inflation :

$$i\frac{\partial \Psi_{\mathbf{k}}^{\mathrm{R,I}}}{\partial \tau} = \hat{\mathcal{H}}_{\mathbf{k}}^{\mathrm{R,I}}\Psi_{\mathbf{k}}^{\mathrm{R,I}}$$

 $\bullet\,$ Modify with 'CSL-like' terms where constant $\gamma\,$

$$d\Psi_{\mathbf{k}}^{\mathrm{R,I}} = \left[-i\hat{\mathcal{H}}_{\mathbf{k}}^{\mathrm{R,I}}d\tau + \sqrt{\gamma}\left(\hat{\zeta}_{\mathbf{k}}^{\mathrm{R,I}} - \left\langle\hat{\zeta}_{\mathbf{k}}^{\mathrm{R,I}}\right\rangle\right)dW_{\tau} - \frac{\gamma}{2}\left(\hat{\zeta}_{\mathbf{k}}^{\mathrm{R,I}} - \left\langle\hat{\zeta}_{\mathbf{k}}^{\mathrm{R,I}}\right\rangle\right)^{2}d\tau\right]$$

- In generic Inflation $\longrightarrow \omega^2 = k^2 \frac{a''}{a}$
- Now it becomes also complex :

$$\omega^2 = k^2 - 2i\gamma - \frac{a''}{a}$$

・ロト ・回 ・ ・ ヨ ・ ・ ヨ ・

Schrödinger picture analysis CSL-like modification with constant γ CSL-like modification with scale-dependent γ

Constant γ case : Main results

All quantities calculated depends upon a scale $2\gamma/k^2$

• Smaller scale modes ($2\gamma \ll k^2$)

 $\operatorname{Re}\Omega_k \approx 2k(-k\tau)^2 \to 0, \qquad \mathcal{P}_{\mathcal{R}}(k) = \frac{1}{16\pi^2 \epsilon M_{\mathrm{ev}}^2}$

- Not affected by γ
- Squeezing in momentum direction (can't explain classicality)
- Power spectrum scale-independent (good for observation)

・ロト ・回ト ・ヨト ・ヨト

Schrödinger picture analysis CSL-like modification with constant γ CSL-like modification with scale-dependent γ

Constant γ case : Main results

All quantities calculated depends upon a scale $2\gamma/k^2$

• Smaller scale modes ($2\gamma \ll k^2$)

 $\operatorname{Re}\Omega_k \approx 2k(-k\tau)^2 \to 0, \qquad \mathcal{P}_{\mathcal{R}}(k) = rac{1}{16\pi^2 \epsilon M_{\mathrm{Pl}}^2}$

- \blacktriangleright Not affected by γ
- Squeezing in momentum direction (can't explain classicality)
- Power spectrum scale-independent (good for observation)

• Larger scale modes (2
$$\gamma \gg k^2$$
)

 $\operatorname{Re}\Omega_k pprox rac{2\gamma}{k}(-k au)
ightarrow 0, \qquad \mathcal{P}_{\mathcal{R}}(k) = rac{k^3}{16\pi^2\epsilon M_{\mathrm{Pl}}^2\gamma k_0}e^{-\Delta N}$

- Affected by γ (which we wanted !!)
- Squeezing in momentum direction (can't explain classicality)
- Power spectrum scale-dependent (bad for observation)

Schrödinger picture analysis CSL-like modification with constant γ CSL-like modification with scale-dependent γ

So far ...

- Constant $\gamma \longrightarrow No$ 'amplification mechanism'
- $\bullet\,$ Squeezing occurs in the momentum direction \longrightarrow same as in generic inflationary scenario
- Longer modes \longrightarrow affected by CSL term \longrightarrow yields scale dependent power \longrightarrow better to keep them outside present horizon
- Shorter modes → not affected by CSL term → produce scale invariant power → but not classicalized

Schrödinger picture analysis CSL-like modification with constant γ CSL-like modification with scale-dependent γ

Outline

The Problem

Qauntum to Classical transition problem in Cosmological context & in Laboratory System Decoherence as a solution (?) Issues with decoherence Continuous Spontaneous Localization Model : In brief Observational aspects of inflation

Plausible Solutions with Collapse models

Schrödinger representation of inflationary perturbation theory CSL-like modification with constant γ CSL-like modification with scale-dependent γ

Conclusion

イロン イヨン イヨン イヨン

Scale-dependent γ

- Modes to behave more classically as they start crossing the horizon
- γ should discriminate between different modes according to their physical length scales \longrightarrow grow stronger as a mode starts crossing the horizon during inflation
- γ should be a function of time

・ロン ・回と ・ヨン・

Scale-dependent γ

- Modes to behave more classically as they start crossing the horizon
- γ should discriminate between different modes according to their physical length scales \longrightarrow grow stronger as a mode starts crossing the horizon during inflation
- $\bullet \ \gamma$ should be a function of time
- Phenomenological ansatz :

$$\gamma = rac{\gamma_0(k)}{(-k au)^lpha}\,, \qquad 0 < lpha < 2$$

Schrödinger picture analysis CSL-like modification with constant γ CSL-like modification with scale-dependent γ

Scale-dependent γ & macro-objectification

$$\operatorname{Re}\Omega_kpprox rac{k}{2}(-k au)^{1-lpha}\left(rac{2\gamma_0(k)}{k^2}
ight)$$

- $0 < \alpha < 1 \longrightarrow \operatorname{Re} \Omega_k \to 0 \longrightarrow$ no macro-objectification
- $1 < \alpha < 2 \longrightarrow \operatorname{Re} \Omega_k \to \infty \longrightarrow$ macro-objectification occurs

・ロト ・回ト ・ヨト ・ヨト

Schrödinger picture analysis CSL-like modification with constant γ CSL-like modification with scale-dependent γ

Scale-dependent γ & scale-invariance of Power spectrum

• Use ${\it k}$ dependence of γ

$$\gamma_0(k) = ilde{\gamma_0} \left(rac{k}{k_0}
ight)^eta$$

•
$$\mathcal{P}_{\mathcal{R}}(k) \propto k^{3+lpha-eta}$$

- $\beta = \mathbf{3} + \alpha$ yields scale invariant power
- 4 < β < 5 for 1 < α < 2

・ロト ・回ト ・ヨト ・ヨト

Schrödinger picture analysis CSL-like modification with constant γ CSL-like modification with scale-dependent γ

Scale-dependent γ & scale-invariance of Power spectrum

• Use k dependence of γ

$$\gamma_0(k) = ilde{\gamma_0} \left(rac{k}{k_0}
ight)^eta$$

•
$$\mathcal{P}_{\mathcal{R}}(k) \propto k^{3+lpha-eta}$$

• $\beta = 3 + \alpha$ yields scale invariant power

• 4 <
$$\beta$$
 < 5 for 1 < α < 2

• This scenario satisfies two observations : Single value of the field consistent with the classical behaviour of the observation and scale invariant power spectrum for a certain range of parameter values.

・ロン ・回と ・ヨン・

Scale-dependent γ & phase coherence

 Phase coherence → important to explain sharp peaks and troughs of the CMB power spectrum

・ロン ・回と ・ヨン ・ヨン

Scale-dependent γ & phase coherence

- Phase coherence \longrightarrow important to explain sharp peaks and troughs of the CMB power spectrum
- f_k are the mode function solution of the MS variable

•
$$f_k = R_k \exp(i\delta_k)$$

- The evolution of the mode function is such that if δ_k is constant for superhorizon scales then the amplitude of the comoving curvature pertubation \mathcal{R}_k is also constant and does not evolve in time
- Amplitude of comoving curvature perturbation

$$|\mathcal{R}_k| \propto rac{1}{\left(a^2 \mathrm{Re} \Omega_k
ight)^{rac{1}{2}}}$$

Scale-dependent γ & phase coherence

- Phase coherence \longrightarrow important to explain sharp peaks and troughs of the CMB power spectrum
- f_k are the mode function solution of the MS variable

•
$$f_k = R_k \exp(i\delta_k)$$

- The evolution of the mode function is such that if δ_k is constant for superhorizon scales then the amplitude of the comoving curvature pertubation \mathcal{R}_k is also constant and does not evolve in time
- Amplitude of comoving curvature perturbation

$$|\mathcal{R}_k| \propto rac{1}{\left(a^2 \mathrm{Re} \Omega_k
ight)^{rac{1}{2}}}$$

Schrödinger picture analysis CSL-like modification with constant γ CSL-like modification with scale-dependent γ

Phase coherence contd

• Cosntant γ case for larger modes:

$$rac{d|\mathcal{R}_k|}{d au} \propto 1/\sqrt{- au}$$

Amplitude grows and do not freeze

• Constant γ case for smaller modes:

$$rac{d|\mathcal{R}_k|}{d au} \propto ext{constant}$$

Amplitude freezes

• Scale-deendent γ case

$$rac{d|\mathcal{R}_k|}{d au} \propto (- au)^{lpha-1}/2$$
 .

For $\alpha>1$ the amplitude freezes

∃ ►

Conclusion

- Scale-dependent γ modification can yield macro-objectification of modes
- Range should be $1 < \alpha < 2$
- $\bullet\,$ For scale-invariant spectrum γ should be function of wavenumber
- $\beta = 3 + \alpha$ for scale-invariance
- Consistent with phase-coherence

・ロン ・回と ・ヨン ・ヨン

Conclusion

- $\bullet\,$ Scale-dependent $\gamma\,$ modification can yield macro-objectification of modes
- Range should be $1<\alpha<2$
- $\bullet\,$ For scale-invariant spectrum γ should be function of wavenumber
- $\beta = \mathbf{3} + \alpha$ for scale-invariance
- Consistent with phase-coherence

A mode-by-mode analysis of inflationary fluctuations will make the expectation of the Hamiltonian diverge

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・

Will possibly lead to back-reaction

Conclusion

- Scale-dependent γ modification can yield macro-objectification of modes
- $\bullet \ \ {\rm Range \ should \ be \ } 1<\alpha<2$
- $\bullet\,$ For scale-invariant spectrum γ should be function of wavenumber
- $\beta = \mathbf{3} + \alpha$ for scale-invariance
- Consistent with phase-coherence

A mode-by-mode analysis of inflationary fluctuations will make the expectation of the Hamiltonian diverge

Will possibly lead to back-reaction

Thank you for your attention !!

イロト イヨト イヨト イヨト