Geometrical and topological properties of CMB Polarization

Vidhya Ganesan, Pravabati Chingangbam

Cosmic Microwave Background

ORIGIN:

- Primordial plasma in the recombination epoch

PROPERTY:

- 2.73K black body radiation
- Highly isotropic and homogeneous
- Linear polarization

CMB fluctuations

ORIGIN OF FLUCTUATIONS:

- Primordial fluctuation in the Inflationary phase of very early Universe

PROPERTY:

- Nearly Gaussian distributed fluctuations with small deviation
- Nearly scale invariant power spectrum

Image: thecmb.org

CMB fields

Each line of sight possess a temperature and polarization value

Temperature:

$$
\frac{\Delta T}{T_{0}}(\theta, \varphi)=\frac{T(\theta, \varphi)-T_{0}}{T_{0}}, \text { where } T_{0}=\langle T(\theta, \varphi)\rangle
$$

Polarization:
Polarization direction pattern

- Stokes parameters Q, U
- Transforms under rotation about line of sight
- Re-expressed in terms of E mode and B mode
- E mode and B mode are invariant under such transfomations

Excursion set of a field

For a fluctuating field $g(\theta, \varphi)$ on a sphere:
A constant field on a sphere with value $\nu \sigma$ UNIVERSAL SET: All points on the sphere
EXCURSION SET: Set of points with field value above the constant field (white points \equiv excursion set)

Systematic variation with the threshold value ν :

Minkowski Functionals

Scalar Minkowski Functionals:
Area fraction, contour length and genus
For example: a ring

- Area fraction $=\frac{\pi r_{\text {out }}^{2}-\pi r_{\text {in }}^{2}}{\text { Total area }}$
- Contour length $=2 \pi r_{\text {in }}+2 \pi r_{\text {out }}$
- Genus $=$ number of hotspots - number of coldspots $=1-1=0$

Tensor Minkowski Functionals

- Definition of $a+b$ rank tensor:
$W_{0}^{a, 0}=\int_{S} \vec{r}^{a} d s, W_{j}^{a, b}=\frac{1}{2} \int_{C} \vec{r}^{a} \otimes \hat{n}^{b} G_{j} d \ell$, for $j=1,2$ with $G_{1}=1$ and $G_{2}=\kappa$
- 3 rank 0 scalars, 3 rank 1 vectors, and 7 rank 2 tensors
- The rank 2 tensors capture more information than the scalars

Minkowski Functionals
\square

Motion-invariant

$$
\{\text { scalar }\}
$$

Motion-covariant

$$
\{\text { vector, tensor }\}
$$

\Downarrow
Translation-invariant

$$
\left\{W_{1}^{1,1}, W_{1}^{0,2}, W_{2}^{1,1}, W_{2}^{0,2}\right\}
$$

Translation-covariant

$$
\left\{\text { vector, } W_{0}^{2,0}, W_{1}^{2,0}, W_{2}^{2,0}\right\}
$$

Definition of $W_{2}^{1,1}$

$$
\begin{gathered}
W_{2}^{1,1}=\frac{1}{2} \int_{C} \vec{r} \otimes \hat{n} \kappa d \ell \\
\vec{r} \rightarrow \text { position vector, } \\
\hat{n} \rightarrow \text { unit normal vector, } \\
\kappa \rightarrow \text { local curvature of contour } C
\end{gathered}
$$

Invariant under translation operation or choice of origin

Real data

Formula for $W_{2}^{1,1}$ of real data ${ }^{1}$:

$$
W_{2}^{1,1}=\sum_{i} \frac{1}{2}\left|\vec{e}_{i}\right|^{-1}\left(\vec{e}_{i} \otimes \vec{e}_{i}\right)
$$

For example: a quadrilateral

$$
\begin{aligned}
& W_{2}^{1,1}=\frac{1}{2}\left|\vec{e}_{A}\right|^{-1}\left[\begin{array}{ll}
e_{A}^{x} * e_{A}^{x} & e_{A}^{x} * e_{A}^{y} \\
e_{A}^{y} * e_{A}^{㐅} & e_{A}^{y} * e_{A}^{y}
\end{array}\right]+\frac{1}{2}\left|\vec{e}_{B}\right|^{-1}\left[\begin{array}{ll}
e_{B}^{x} * e_{B}^{x} & e_{B}^{x} * e_{B}^{y} \\
e_{B}^{y} * e_{B}^{x} & e_{B}^{y} * e_{B}^{y}
\end{array}\right]+\ldots \\
& =\frac{1}{2} a^{-1}\left[\begin{array}{cc}
a^{2} & 0 \\
0 & 0
\end{array}\right]+\frac{1}{2} b^{-1}\left[\begin{array}{cc}
0 & 0 \\
0 & b^{2}
\end{array}\right]+\frac{1}{2} a^{-1}\left[\begin{array}{cc}
a^{2} & 0 \\
0 & 0
\end{array}\right]+\frac{1}{2} b^{-1}\left[\begin{array}{cc}
0 & 0 \\
0 & b^{2}
\end{array}\right] \\
& =\left[\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right]
\end{aligned}
$$

Real data with many structures

Anisotropy Measure β :
$\beta=1$

- λ_{1}, λ_{2} are eigenvalues of $W_{2}^{1,1}$ with $\lambda_{1} \leq \lambda_{2}$ for each structure
- Average $\frac{\lambda_{1}}{\lambda_{2}}$ over all the structures
- $\beta=\left\langle\frac{\lambda_{1}}{\lambda_{2}}\right\rangle, 0 \leq \beta \leq 1$
- Encapsulates net anisotropy of the structures
- For quadrilateral: $\beta=\frac{b}{a}$

Real data with many structures

Orientation Measure α :

- Average $W_{2}^{1,1}$ over all the structures
- Λ_{1}, Λ_{2} are eigenvalues of $\left\langle W_{2}^{1,1}\right\rangle$ with $\Lambda_{1} \leq \Lambda_{2}$
- $\alpha=\frac{\Lambda_{1}}{\Lambda_{2}}, \beta \leq \alpha \leq 1$
- Encapsulates net orientation of the structures
- Completely aligned : $\alpha=\beta$

Randomly aligned : $\alpha=1$

Numerical calculation of $W_{2}^{1,1}$ for any general planar field

TMFCode \Longrightarrow Computes α, β for an excursion set of any general planar field

ALGORITHM:

1. Scanning and tracking individual structures:

- Outer scan : Pixel with field value above the threshold value is found
- Inner scan : All connected pixels are found and labelled as a single structure

Numerical calculation of $W_{2}^{1,1}$ for any general planar field

2. Defining the boundaries for structures:

- Planar field is divided into area segments with pixel centers as its vertices
- Line segments are defined based on the surrounding four pixel centers configuration

3. Computation of α and β :

- $W_{2}^{1,1}$ is calculated for individual structures
- α and β is then computed

NOTE: We use stereo-graphic projection to map CMB field onto a plane

Boundary for pixel center configurations

MARCHING SQUARE ALGORITHM

13

Pixelization error

Analytical formula of $W_{2}^{1,1}$ for an ellipse with major axis p and minor axis q :

$$
W_{2}^{1,1}=\left[\begin{array}{cc}
f_{2}^{1,1}(p, q) & 0 \\
0 & f_{2}^{1,1}(q, p),
\end{array}\right], \quad f_{2}^{1,1}(p, q)=\frac{1}{2} p^{2} q^{2} \int_{0}^{2 \pi} d \varphi \frac{\cos ^{2} \varphi}{\left[p^{2}-\left(p^{2}-q^{2}\right) \cos ^{2} \varphi\right]^{3 / 2}}
$$

Single ellipse on a plane

q / p	β from analytical formula	β from TMFCode 3000^{2} pixels	\% error
1.0000	1.0000	1.0000	0.0
0.8000	0.7154	0.7641	6.8
0.6000	0.4638	0.5418	16.8
0.5000	0.3518	0.4370	24.2
0.3000	0.1602	0.2432	51.8
0.1000	0.0274	0.0741	170.4

- Interpolating the \% error at $\beta=0.68 \rightarrow 9.68 \%$
- Corrected $\beta=0.62$

Double ellipse on a plane

Angle between major axis of the ellipses	α from analytical formula	α from TMFCode 3000^{2} pixels	\% error
0°	0.3518	0.4369	24.2
20°	0.3787	0.4674	23.4
45°	0.4936	0.5661	14.7
60°	0.6132	0.6727	9.7
90°	1.0000	1.0000	0.0

- \% error for $\alpha \sim 1$ is negligible
- No correction required

Stereographic projection effects

Structures as it gets closer to the equator:

Orientation measure for different projection planes:

What Standard model predicts for α and β ?

Threshold: $|\nu|=1$
Prediction for Gaussian and isotropic CMB fields:
Temperature $\Longrightarrow \alpha=1, \beta=0.62$
E mode $\quad \Longrightarrow \alpha=1, \beta=0.63$
Implications:
Statistical isotropy and Intrinsic anisotropy

Analysis of PLANCK data

- Foreground separated maps: SMICA, COMMANDER, NILC, and SEVEM
- Frequency simulation maps of 44 GHz with instrumental noise effects
- An excursion set contains a group of zero or one or more structures. Different phenomenon may induce different characteristic pattern in these structures and their variation with the threshold value
- Anisotropy measure (β) of PLANCK temperature and E mode field are consistent within $2-\sigma$
- Orientation measure of PLANCK temperature field is consistent within $1.2-\sigma$
- Orientation measure of PLANCK E mode field shows deviations $3-\sigma$ to $5.3-\sigma$ from the standard model

Aspects of CMB polarization fields

Study of non-Gaussian features in CMB polarization fields:

- E mode field can provide independent and equally strong constraint on $f_{N L}$
- PLANCK results confirmed these theoretical expectations but it was not as significant as expected due to the presence of instrumental effects
- Polarization intensity, Q and U fields are not capable of providing an independent constraint on $f_{N L}$
- The CMB fields can be used in conjunction to distinguish primordial non-Gaussianity from other sources
Study of the presence of tensor perturbation in CMB polarization fields:
- SMFs of Q, U and I_{P} are sensitive to the presence of tensor perturbation and their amplitude decreases with r.
- Number density of singularities in I_{P} is also sensitive and it decreases with r.
- These findings will be useful for the searches of B mode polarization in the future experiments.

THANK YOU

