Geometrical and topological properties of CMB Polarization

Vidhya Ganesan, Pravabati Chingangbam

Cosmic Microwave Background

ORIGIN:

Primordial plasma in the recombination epoch

PROPERTY:

- 2.73K black body radiation
- Highly isotropic and homogeneous
- Linear polarization

CMB fluctuations

ORIGIN OF FLUCTUATIONS:

 Primordial fluctuation in the Inflationary phase of very early Universe

PROPERTY:

- Nearly Gaussian distributed fluctuations with small deviation
- Nearly scale invariant power spectrum

Image: thecmb.org

CMB fields

Each line of sight possess a temperature and polarization value

Temperature:

$$rac{\Delta T}{T_0}(heta,arphi) = rac{T(heta,arphi) - T_0}{T_0}$$
, where $T_0 = \langle T(heta,arphi)
angle$

Polarization:

- Stokes parameters Q, U
- Transforms under rotation about line of sight
- Re-expressed in terms of E mode and B mode
- E mode and B mode are invariant under such transfomations

Polarization direction pattern

Image: https://astrobites.org/2013/07/24/lensing-b-modes-in-the-cosmic-microwave-background-polarization/

Excursion set of a field

For a fluctuating field g(heta, arphi) on a sphere:

A constant field on a sphere with value $\nu\sigma$ UNIVERSAL SET: All points on the sphere EXCURSION SET: Set of points with field value above the constant field (white points \equiv excursion set)

Systematic variation with the threshold value ν :

 $-\sigma$

0

 $+\sigma$

Minkowski Functionals

Scalar Minkowski Functionals: Area fraction, contour length and genus

For example: a ring

• Area fraction =
$$\frac{\pi r_{out}^2 - \pi r_{in}^2}{\text{Total area}}$$

• Contour length =
$$2\pi r_{in} + 2\pi r_{out}$$

• Genus = number of hotspots - number of coldspots = 1 - 1 = 0

Tensor Minkowski Functionals

• Definition of
$$a + b$$
 rank tensor:
 $W_0^{a,0} = \int_S \vec{r}^{\ a} \ ds, W_j^{a,b} = \frac{1}{2} \int_C \vec{r}^{\ a} \otimes \hat{n}^b G_j d\ell$,
for $j = 1, 2$ with $G_1 = 1$ and $G_2 = \kappa$

- 3 rank 0 scalars, 3 rank 1 vectors, and 7 rank 2 tensors
- ▶ The rank 2 tensors capture more information than the scalars

Definition of $W_2^{1,1}$

$$W_2^{1,1} = \frac{1}{2} \int_C \vec{r} \otimes \hat{n} \kappa \, d\ell$$

 $\vec{r} \rightarrow \text{position vector,}$
 $\hat{n} \rightarrow \text{unit normal vector,}$

$$\kappa \rightarrow$$
 local curvature of contour C

Invariant under translation operation or choice of origin

Real data

Formula for $W_2^{1,1}$ of real data ¹:

$$W_2^{1,1} = \sum_i rac{1}{2} |ec{e_i}|^{-1} (ec{e_i} \otimes ec{e_i})$$

For example: a quadrilateral

$$W_{2}^{1,1} = \frac{1}{2} |\vec{e}_{A}|^{-1} \begin{bmatrix} e_{A}^{x} * e_{A}^{x} & e_{A}^{x} * e_{A}^{y} \\ e_{A}^{y} * e_{A}^{x} & e_{A}^{y} * e_{A}^{y} \end{bmatrix} + \frac{1}{2} |\vec{e}_{B}|^{-1} \begin{bmatrix} e_{B}^{x} * e_{B}^{x} & e_{B}^{x} * e_{B}^{y} \\ e_{B}^{y} * e_{B}^{x} & e_{B}^{y} * e_{B}^{y} \end{bmatrix} + \dots$$
$$= \frac{1}{2} a^{-1} \begin{bmatrix} a^{2} & 0 \\ 0 & 0 \end{bmatrix} + \frac{1}{2} b^{-1} \begin{bmatrix} 0 & 0 \\ 0 & b^{2} \end{bmatrix} + \frac{1}{2} a^{-1} \begin{bmatrix} a^{2} & 0 \\ 0 & 0 \end{bmatrix} + \frac{1}{2} b^{-1} \begin{bmatrix} 0 & 0 \\ 0 & b^{2} \end{bmatrix}$$
$$= \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}$$

¹G.E. Schroder-Turk et al., J. Microsc. 238 57 (2010)

Real data with many structures

Anisotropy Measure β :

 λ₁, λ₂ are eigenvalues of W₂^{1,1} with λ₁ ≤ λ₂ for each structure

• Average $\frac{\lambda_1}{\lambda_2}$ over all the structures

$$\blacktriangleright \ \beta = \left\langle \frac{\lambda_1}{\lambda_2} \right\rangle, \ 0 \le \beta \le 1$$

Encapsulates net anisotropy of the structures

• For quadrilateral:
$$\beta = \frac{b}{a}$$

$$\beta = 0.2$$

Real data with many structures

Orientation Measure α :

• Average $W_2^{1,1}$ over all the structures

• Λ_1 , Λ_2 are eigenvalues of $\langle W_2^{1,1} \rangle$ with $\Lambda_1 \leq \Lambda_2$

$$\blacktriangleright \ \alpha = \frac{\Lambda_1}{\Lambda_2}, \ \beta \le \alpha \le 1$$

Encapsulates net orientation of the structures

Numerical calculation of $W_2^{1,1}$ for any general planar field

 $\mathsf{TMFCode} \implies \mathsf{Computes} \ \alpha, \beta \text{ for an excursion set of any general planar field}$

ALGORITHM:

- 1. Scanning and tracking individual structures:
 - Outer scan : Pixel with field value above the threshold value is found
 - Inner scan : All connected pixels are found and labelled as a single structure

Numerical calculation of $W_2^{1,1}$ for any general planar field

- 2. Defining the boundaries for structures:
 - Planar field is divided into area segments with pixel centers as its vertices
 - Line segments are defined based on the surrounding four pixel centers configuration
- 3. Computation of α and β :
 - $W_2^{1,1}$ is calculated for individual structures
 - $\blacktriangleright \ \alpha$ and β is then computed

NOTE: We use stereo-graphic projection to map CMB field onto a plane

Boundary for pixel center configurations

Pixelization error

Analytical formula of $W_2^{1,1}$ for an ellipse with major axis p and minor axis q:

$$W_2^{1,1} = egin{bmatrix} f_2^{1,1}(p,q) & 0 \ 0 & f_2^{1,1}(q,p), \end{bmatrix}, \quad f_2^{1,1}(p,q) = rac{1}{2} p^2 q^2 \int_0^{2\pi} darphi rac{cos^2 arphi}{[p^2 - (p^2 - q^2) cos^2 arphi]^{3/2}}$$

Single ellipse on a plane

q/p	β from	β from TMFCode	% error
	analytical	3000 ² pixels	
	formula		
1.0000	1.0000	1.0000	0.0
0.8000	0.7154	0.7641	6.8
0.6000	0.4638	0.5418	16.8
0.5000	0.3518	0.4370	24.2
0.3000	0.1602	0.2432	51.8
0.1000	0.0274	0.0741	170.4

- Interpolating the % error at $\beta = 0.68 \rightarrow 9.68$ %
- Corrected $\beta = 0.62$

Double ellipse on a plane

Angle between	α from	α from TMFCode	% error
major axis	analytical	3000 ² pixels	
of the ellipses	formula		
0°	0.3518	0.4369	24.2
20°	0.3787	0.4674	23.4
45°	0.4936	0.5661	14.7
60°	0.6132	0.6727	9.7
90°	1.0000	1.0000	0.0

- % error for $\alpha \sim 1$ is negligible
- No correction required

Stereographic projection effects

Structures as it gets closer to the equator:

Orientation measure for different projection planes:

What Standard model predicts for α and β ?

Threshold: $|\nu| = 1$

Prediction for Gaussian and isotropic CMB fields:

Temperature $\implies \alpha = 1, \beta = 0.62$

 $E \mod \alpha = 1, \ \beta = 0.63$

Implications:

Statistical isotropy and Intrinsic anisotropy

Analysis of PLANCK data

- ▶ Foreground separated maps: SMICA, COMMANDER, NILC, and SEVEM
- ▶ Frequency simulation maps of 44GHz with instrumental noise effects
- An excursion set contains a group of zero or one or more structures. Different phenomenon may induce different characteristic pattern in these structures and their variation with the threshold value
- Anisotropy measure (β) of PLANCK temperature and E mode field are consistent within 2σ
- \blacktriangleright Orientation measure of PLANCK temperature field is consistent within 1.2 σ
- Orientation measure of PLANCK *E* mode field shows deviations 3σ to 5.3σ from the standard model

Aspects of CMB polarization fields

Study of non-Gaussian features in CMB polarization fields:

- E mode field can provide independent and equally strong constraint on f_{NL}
- PLANCK results confirmed these theoretical expectations but it was not as significant as expected due to the presence of instrumental effects
- \blacktriangleright Polarization intensity, Q and U fields are not capable of providing an independent constraint on f_{NL}
- The CMB fields can be used in conjunction to distinguish primordial non-Gaussianity from other sources

Study of the presence of tensor perturbation in CMB polarization fields:

- SMFs of Q, U and I_P are sensitive to the presence of tensor perturbation and their amplitude decreases with r.
- Number density of singularities in I_P is also sensitive and it decreases with r.
- These findings will be useful for the searches of B mode polarization in the future experiments.

THANK YOU