Aritra Kumar Gon **Rishi Khatri**

> **IIT Madras** September 2023

The y-type polarised kinetic Sunyaev-Zeldovich effect -Pairwise & cross-pairwise estimator

Polarisation in the CMB: Quadrupolar anisotropy

***** Thomson scattering of CMB quadrupole by the free electrons produces linear polarisation.

Polarisation in the CMB: Quadrupolar anisotropy

Thomson scattering of CMB quadrupole by the free electrons produces linear polarisation.

***** The source of the quadrupole can be due to different physical processes.

Inflationary tensor perturbation ***** Free streaming of photons Peculiar velocity of free electrons

Production of free electrons: Reionization

Free electrons are produced during reionization era when the radiation from the first collapsed objects ionises the surrounding neutral hydrogen medium.

Production of free electrons: Reionization

Free electrons are produced during reionization era when the radiation from the first collapsed objects ionises the surrounding neutral hydrogen medium.

* Post-reionisation these electrons are present near the galaxies, in filaments, and in the intra cluster medium (ICM) of galaxy clusters.

Electron peculiar velocities at second order generate polarisation in the CMB: The pkSZ effect

Post-reionisation, the ICM provides the highest optical depth to Thomson scattering.

Predicted by Sunyaev and Zeldovich in 1980.

Previous works: Renaux-Petel et al. 2013 Hotinli et al. 2022

Electron peculiar velocities at second order generate polarisation in the CMB: The pkSZ effect

Post-reionisation, the ICM provides the highest optical depth to Thomson scattering.

Clusters have peculiar velocities; CMB is not isotropic in electron's rest frame - In particular a quadrupole is present.

Predicted by Sunyaev and Zeldovich in 1980.

Previous works: Renaux-Petel et al. 2013 Hotinli et al. 2022

Electron peculiar velocities at second order generate polarisation in the CMB: The pkSZ effect

Post-reionisation, the ICM provides the highest optical depth to Thomson scattering.

Clusters have peculiar velocities; CMB is not isotropic in electron's rest frame - In particular a quadrupole is present.

> * Non-linear nature of Relativistic Doppler shift.

***** A non-linear relation between temperature and intensity in the Planck spectrum

Predicted by Sunyaev and Zeldovich in 1980.

Previous works: Renaux-Petel et al. 2013 Hotinli et al. 2022

Beating the cosmic variance with pkSZ effect

Photons from different blackbody spectra with different temperatures mix.

The electron sees a spectrum: not only has a differential blackbody but also a y-type distortion.

Beating the cosmic variance with pkSZ effect

Photons from different blackbody spectra with different temperatures mix.

The electron sees a spectrum: not only has a differential blackbody but also a y-type distortion.

$$\delta n_{\nu} = \frac{1}{2h\nu^{3}} \delta I_{\nu} = \left(\theta + \theta^{2}\right) \left(\left(T \frac{\partial n_{pl}}{\partial T} \right) \right|_{T_{0}} + \frac{\theta^{2}}{2} \left(\left(T \frac{\partial n_{pl}}{\partial T} \left(\frac{1}{T^{2}} \frac{\partial n_{pl}}{\partial T} \right) \right) \right|_{T_{0}} + \mathcal{O}(\theta^{3}) \cdots$$

$$x = \frac{h\nu}{k_B T_0} \qquad \left(\frac{\delta I}{I}\right)\Big|_{\text{(quadrupolar)}} = 2\left(\mathbf{v}\cdot\hat{\mathbf{n}}'\right)^2 g(x) + \frac{1}{2}y(x)\left(\mathbf{v}\cdot\hat{\mathbf{n}}'\right)^2 \qquad y(x) = \frac{xe^x}{(e^x - 1)}\left(x\frac{e^x + 1}{e^x - 1} - 4\right)^2$$

Beating the cosmic variance with pkSZ effect

Photons from different blackbody spectra with different temperatures mix.

* The electron sees a spectrum: not only has a differential blackbody but also a y-type distortion.

$$\delta n_{\nu} = \frac{1}{2h\nu^{3}} \delta I_{\nu} = \left(\theta + \theta^{2}\right) \left(\left(T \frac{\partial n_{pl}}{\partial T} \right) \right|_{T_{0}} + \frac{\theta^{2}}{2} \left(\left(T \frac{\partial n_{pl}}{\partial T} \left(\frac{1}{T^{2}} \frac{\partial n_{pl}}{\partial T} \right) \right) \right|_{T_{0}} + \mathcal{O}(\theta^{3}) \cdots$$

$$x = \frac{h\nu}{k_B T_0} \qquad \left(\frac{\delta I}{I}\right)\Big|_{\text{(quadrupolar)}} = 2\left(\mathbf{v}\cdot\hat{\mathbf{n}}'\right)^2 g(x) + \frac{1}{2}y(x)\left(\mathbf{v}\cdot\hat{\mathbf{n}}'\right)^2 \qquad y(x) = \frac{xe^x}{(e^x - 1)}\left(x\frac{e^x + 1}{e^x - 1} - 4\right)^2$$

Polarisation direction is always perpendicular to the transverse velocity direction

***** The polarisation field : $(\mathcal{Q} \pm i\mathcal{U})(\hat{\mathbf{n}}) \equiv P_{\pm}(\hat{\mathbf{n}})$ $P_{+}(\hat{\mathbf{n}} \equiv \hat{\mathbf{z}}) = -\frac{1}{10} \tau_{\text{eff}} v_{t}^{2}(\mathbf{x}) e^{-2i\phi}$

Signal too small to observe directly !

Sensitivity of current generation experiments: $\sim \mu K$

***** The polarisation field : $(\mathcal{Q} \pm i\mathcal{U})(\hat{\mathbf{n}}) \equiv P_{\pm}(\hat{\mathbf{n}})$ $P_{+}(\hat{\mathbf{n}} \equiv \hat{\mathbf{z}}) = -\frac{1}{10} \tau_{\text{eff}} v_{t}^{2}(\mathbf{x}) e^{-2i\phi}$ $P_{+} \sim 10^{-4} \, \mu K$

 $\boldsymbol{\mathcal{X}}$

Clusters which are close to each other will have peculiar velocities ~ towards each other

* Averaging over many clusters which are at a fixed separation will generate a net non-zero polarisation signal.

 \mathcal{X}

Coherent addition of the Q parameter gives a net non-zero polarisation signal.

Coherent addition of the Q parameter gives a net non-zero polarisation signal.

Theoretical formalism of the pairwise estimator

 $\hat{P}_{\text{pairwise}}(x) = \sum_{i} w_i (P_{i1+} + P_{i2+}) \Big|_{x}$

separation along x – axis

Theoretical formalism of the pairwise estimator

 $\langle \hat{P}_{\text{pairwise}}(x) \rangle \propto \langle (P_{i1+} + P_{i2+}) \rangle = P_{\text{pairwise}}(\mathbf{x}, \hat{\mathbf{n}}_{12} | m, \chi)$

Pairwise signal - dependent cosmological and astrophysical parameters

Thomson Optical depth $\langle \hat{P}_{\text{pairwise}}(x) \rangle \propto \langle (P_{i1+} + P_{i2+}) \rangle = P_{\text{pairwise}}(x, \hat{n}_{12} | m, \chi)$

 $\frac{q!}{(q-l)!!(q+l+1)!!} \begin{pmatrix} 1 & L_1 & l \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & L_2 & l \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} L_1 & L_2 & 2 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 2 & L_2 & L_1 \\ l & 1 & 1 \end{pmatrix}$

 $\int dk_1 dk_2 k_1^2 k_2^2 G_q(k_1, k_2, b_1, b_2) j_{L_1}(k_1 x) j_{L_2}(k_2 x) P(k_1) P(k_2) \left[1 + \frac{D^2 b_1^2}{2\pi^2} \int dk \, k^2 j_0(k x) P(k) \right]^{-1}$

Linear matter power spectrum

Smaller mass cluster have lower optical depth, thus lower polarisation signal.

Choosing proper weights to optimise the estimator

 $\hat{P}_{\text{pairwise}}(x) = \sum_{i} w_i (P_{i1+} + P_{i2+}) \bigg|_{\text{separation along}}$ x - axis $P_{\text{pairwise}}(\mathbf{x}, \hat{\mathbf{n}}_{12} | m, \chi) \propto \tau_{\text{eff}}(m, \chi) Y_{2-2}(\hat{\mathbf{x}}; \hat{\mathbf{n}}_{12})$

Thomson **Optical depth of** clusters

Denoting the orientation of the cluster pair wrt LOS

Choosing proper weights to optimise the estimator

***** Give more weights to pair which are more aligned to the plane of the sky

Give more weights to more massive clusters

 $\hat{P}_{\text{pairwise}}(x) = \sum_{i} w_i (P_{i1+} + P_{i2+}) |_{\text{separation along}}$ x - axis $P_{\text{pairwise}}(\mathbf{x}, \hat{\mathbf{n}}_{12} | m, \chi) \propto \tau_{\text{eff}}(m, \chi) Y_{2-2}(\hat{\mathbf{x}}; \hat{\mathbf{n}}_{12})$

Thomson **Optical depth of** clusters

Denoting the orientation of the cluster pair wrt LOS

 $\hat{P}_{\text{pairwise}}(x) = \sum_{i} w_i (P_{i1+} + P_{i2+})$

Optimal estimator $\sum_{i} m_{i} \sin^{2} \theta_{i} \quad m_{i} \sin^{2} \theta_{i}$ Wi

Signal to Noise ratio 10^{-1}

x - axis

Forecast for CMB-S4 and CMB-HD

Cross-pairwise pkSZ effect to the rescue!

Cross-pairwise pkSZ effect to the rescue!

Clusters being rare - noisy tracers, better to use galaxies.

*In general, we can pair up a cluster with any other indicator of the large-scale gravitational potential around the cluster.

Cross-pairwise pkSZ effect to the rescue!

Clusters being rare - noisy tracers, better to use galaxies.

*In general, we can pair up a cluster with any other indicator of the large-scale gravitational potential around the cluster.

*Polarisation signal from galaxies is negligible, but they are much more in number!

separation along

x – axis

Forecast for Cross-pairwise pkSZ effect

Forecast for Cross-pairwise pkSZ effect

So what can be done with this pkSZ signal?

* The kSZ effects only ways to probe peculiar velocities in the Universe, other probes measure a combine effect of Hubble flow and peculiar velocities.

So what can be done with this pkSZ signal?

* The kSZ effects only ways to probe peculiar velocities in the Universe, other probes measure a combine effect of Hubble flow and peculiar velocities.

* The pkSZ effect is sensitive to the transverse component, knowing the full velocity field can act as a consistency check of the underlying matter density field

So what can be done with this pkSZ signal?

* The kSZ effects only ways to probe peculiar velocities in the Universe, other probes measure a combine effect of Hubble flow and peculiar velocities.

* The pkSZ effect is sensitive to the transverse component, knowing the full velocity field can act as a consistency check of the underlying matter density field

* It is sensitive to cosmological parameters, probe of large scale structure of the universe

Concluding Remarks

This polarisation signal with y-type distortion exists within the Standard Cosmological model of the Universe

* The cross-pairing clusters from CMB-S4 with galaxies from large overlapping spectroscopic survey can provide a way to detect the signal.

 Free from the cosmic variance of the primary CMB polarisation signal and lensing B modes.

