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MEMORY IN COMMON SENSE

Memory is the faculty of the mind by which

data or information is encoded, stored, and

retrieved when needed. It is the retention

of information over time for the purpose

of influencing future action...

– Wikipedia on human memory.

Memory is an organism’s ability to store,

retain, and recall information.

– Wikipedia on memory for ‘other’ uses.



MEMORY IN MATTER

‘Memory formation in matter is a theme of

broad intellectual relevance; it sits at the

interdisciplinary crossroads of physics, bi-

ology, chemistry, and computer science....’

Keim et al, RMP (2019).

Huge variety:

Memory of direction, memory of duration,

memory of input, hysteresis, cyclic driving,

shape memory, echoes, memristors, asso-

ciative memory, initial conditions....

Most of them involve a remembrance of

an influence or experience of the past.



MEMORY EFFECTS IN PHYSICS

Memory effects have to do with permanent

changes induced by radiation on physical

configurations, like a collection of test par-

ticles with certain positions and velocities.

They are classical observable effects in the

low-energy region of gravity and gauge the-

ories.

- Web output for ‘memory effects in physics’



GRAVITATIONAL WAVE

MEMORY



HISTORY

• Zel’dovich and Polnarev:

The idea of observing a burst-like grav-

itational wave through the displacement

of freely falling bodies after the wave has

passed was put forward in 1974 (already

50 years!). Linearised gravity.

. . . another, nonresonance, type of detector is

possible, consisting of two noninteracting bod-

ies (such as satellites). . . . the value of hik
after the encounter of two objects differs from

the value before the encounter. As a result the

distance between a pair of free bodies should

change, and in principle this effect might pos-

sibly serve as a nonresonance detector.....

Radiation of gravitational waves from a cluster of superdense

stars, Soviet Astronomy(1974)



• Braginsky and Grishchuk:

Introduced ‘memory effect’ in GW physics

in 1985. ‘Change in deviation ∝ Change in

hij.’Linearised gravity.

.... In the memory effect, the distance between

a pair of bodies is different from the initial dis-

tance in the presence of a gravitational radia-

tion pulse. ....

• Braginsky and Thorne, Gibbons and Hawk-

ing: Linearised gravity.

Braginsky and Thorne, in 1987, made a

distinction between two types of bursts,

namely, one without memory and one with

memory. The same distinction had been

much made earlier by Gibbons and Hawk-

ing (1971) but without explicit mention of

the memory concept.



• Christodoulou, Blanchet and Damour:

In the 1990s, a nonlinear memory was dis-

covered, independently, by Christodoulou

(1991) and by Blanchet and Damour (1992).

It arises from the contribution of the emit-

ted gravitational waves to the changing

quadrupole and higher mass moments. They

obtained a permanent displacement.

• Strominger, Pasterski, Zhiboedov (2014):

Asymptotic symmetries, soft theorems, mem-

ory; infrared triangle.

Asymptotic symmetry BMS group and mem-

ory (Vacuum transitions); memory and soft

theorems (Fourier transform); asymptotic

symmetry and soft theorems (Ward iden-

tities).



• Gibbons, Horvathy, Duval, Zhang (2017):

Uses exact pp-wave geometry for GWs.

Displacement and velocity memory in pp-

wave spacetimes with different pulse shapes.

We will focus on this approach in the next

part of this talk.

• Flanagan, Grant, Nichols, Harte (2019-):

Persistent gravitational wave observables.

Attempt to define different observables which

show permanent changes. Done both in

the perturbative and non-perturbative regimes.

• Review by M. Favata (2010): 1003.3486,

see also Mitman et al, 2405:08868.



• Observational status:

• Gravitational wave memory due to bursts.

Arms of GW interferometers may expe-

rience a permanent change in ‘effective

proper length’ due to a GW burst.

Can we isolate any cumulative d.c. effect

caused by the many events that have hit

the apparatus?

No detections yet as stated in Cheung,

Lasky, Thrane, CQG (2024)

It seems one requires O(2000) BBH merger

data for a significant observable effect!



WHAT TO DETECT? PROSPECTS

• The expected signal:

From a talk by M. Favata.

• Overall tiny DC effect.



• Possible detections:

From a talk by M. Favata.

• Two cases: (1) BH Binary with Mtot =

106Msun at z = 1; (2) BH Binary with Mtot =

100MSun at 200 Mpc.

• For (2), Strain Amplitude is 10−23 (de-

tector arm 103 to 104 m) and change in

length due to memory signal is 10−19 m.



• Detectability (Favata (2009)):

• Memory from a GW that passed through

a region in the distant past (long before

the start of the observation) is itself diffi-

cult to detect.

• What is actually observable is the buildup

of memory over some observation time.

• LISA appears to have better chances be-

cause we have ‘free fall’. In LIGO/VIRGO

etc. mirrors are fixed via servo-mechanisms.

• Memory manifest in ‘different’ incarna-

tions of Minkowski spacetime. The link

with BMS symmetries and asymptotic sym-

metry group. How?



• Choose TT coordinates. z axis along
wave direction. Late time metric:

ds2 = −dt2 + (1+ h+)dx2 + (1− h+)dy2

+2h×dxdy + dz2

Take h+, h× constant near detector for a
d.c. memory signal.

Transform to a new set of coordinates given
by (T, X, Y, Z):

T = t ; Z = z

X = x+
h× −

√
h+

√
1− h2+ − h2×

1+ h+
y

Y =
√
h+ x+

h×
√
h+ +

√
1− h2+ − h2×

1+ h+
y

where ds2 = −dT2 + dX2 + dY 2 + dZ2.

Memory manifest in the coordinate trans-
formation → asymptotic symmetries.



OUR APPROACH (THEORETICAL)

• Motivated by gravitational wave physics

research. But we do not use linearised

gravity.

• Do trajectories remember that they have

encountered a burst or pulse in the past?

How? Is it quantified, measurable?

• To develop a model:

→ we need a spacetime with gravitational

waves near the detector.

→ a way to represent pulses or bursts

→ study individual or relative motion of

test objects.

→ Infer about permanent changes from

such analyses.



WHAT WE DO

• Spacetime: plane parallel wave (pp-waves).

• Pulse/burst: Square or sech-squared.

• Test objects: particles or test strings.

• What to study: propagation from past

to future.

• Compare: situations much before and

much after the pulse. Quantify any differ-

ence.

The main question:

Does the pulse leave an imprint in the

future behaviour of test objects? How?



THE SQUARE PULSE
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• The Fourier transform of a square pulse

is a ‘Sinc ω
2’ function for a pulse between

(−1
2,

1
2), of unit height. It is peaked around

ω ∼ 0, i.e. low energies, ‘soft’. Generic

pulses behave similarly.

We look for different signatures and sce-

narios which characterise memories of a

square pulse.



THE PP-WAVE SPACETIME

• Vacuum solutions of the Einstein equa-
tions of GR (Brinkmann coordinates)

ds2 = −H(u, x, y)du2 − 2dudv + dx2 + dy2

where, u = t− z, v = t+ z.

• H,xx+H,yy = 0 from EE. This leads to

H(u, x, y) = 1
2A+(u)[x2 − y2] +A×(u)xy

A+(u) and A×(u) are the two polarisations.
These are free functions.

• The Riemann tensor:

Rxuxu =
1

2
A+(u) = −Ryuyu;Rxuyu =

1

2
A×(u)

•The Riemann curvature changes with u

and has a fixed value on a u =const. hy-
persurface. Fixed u hypersurfaces are the
planar wavefronts.



• One can also write the metric using the

BJR coordinates through which one can

see the link with the perturbative hij.

ds2 = −2dudV + aij(u)dX
idXj

• u is the null coordinate. Considering

u = t− z, curvature disturbances propagate

along z with the speed of light.

• The spacetime gets distorted in the space

orthogonal (i.e. along X1, X2) to the direc-

tion of propagation.

• Constant u hypersurfaces correspond to

planar wavefronts. Hence, a plane gravi-

tational wave spacetime.

• The function aij(u) encodes the gravi-

tational wave field. If aij = I2×2, the full

metric is manifestly Minkowski .



• In the transverse traceless (TT) gauge,
linearized plane waves can be written in
this coordinate system using aij = δij+hTT

ij .

• Coordinate transformations between BJR
and Brinkmann are known (see Gibbons et
al (PRD, 2017)).

• Also known as a sandwich wave.

We will use A+(u) only and assume it as a
square pulse.



MEMORY IN GEODESICS

• Note that u behaves as an affine param-

eter for geodesics. v variation gives ü = 0.

• Geodesic eqns (x,y) in Brinkmann coordi-

nates having both non-zero polarizations.

ẍ = −
1

2
A+(u)x−

1

2
A×(u)y

ÿ =
1

2
A+(u)y −

1

2
A×(u)x

• v eqn. can be solved once x,y are known.

• We can solve analytically for x, y with

A×(u) = 0 and A+(u) as a square pulse of

height A0 and width 2a.

• Match x, y and ẋ, ẏ at the boundaries for

full profile.



• x(u), y(u) evolution. Constant separa-

tion before. Vertical lines indicate pulse

location.

Change in separation after the pulse. Zero

separation along x. Displacement memory.



• ẋ(u), ẏ(u) evolution.

Change in velocity along x and y. Velocity

memory effect.



• Behaviour of a ring of particles following
geodesics, for a ‘plus’ pulse.

→ In Region-I (u ≤ −a), the solutions are:
x(u) = α = r cosϕ and y(u) = β = r sinϕ.
Thus, the locus corresponding to the initial
configuration is a circle: x2 + y2 = r2.

→ In Region-III (u ≥ a), we have,

x(u) = r[cos 2ξ − (ν − 1)ξ sin 2ξ] cosϕ = R1 cosϕ

y(u) = r[cosh2ξ + (ν − 1)ξ sinh2ξ] sinϕ = R2 sinϕ

→ Here ξ = aA0, u = νa(ν > 1). One can
check that R1 ̸= R2. Hence, after the pulse
departs, the loci becomes an ellipse.

x2

R2
1
+

y2

R2
2
= 1

ELLIPSECIRCLE

u < a u > a

r

R1

R2



• The nature of the ellipse is determined

by ξ = aA0. Thus, the character of the

pulse determines the change in shape of

the configuration.

• To observe focusing we have to check

whether R1 and/or R2 vanish. Setting R1 =

0 we get,

tan(2ξ) =
1

(ν − 1)ξ

Similarly, setting R2 = 0 gives,

tanh(2ξ) = −
1

(ν − 1)ξ

• The above eqns. are transcendental and

hence, analytic solutions are not possible.

We try to find solutions using plots.
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• The figures show that there exist solu-

tions for ξ when R1 = 0. But, no solution

exists for R2 = 0. Thus, we find that the

ellipse degenerates to a straight line along

the y-direction.

•This is consistent with our previous x,

y plots, where we had shown the forma-

tion of a benign caustic as the geodesic

separation along x-direction vanishes (i.e.

x2 − x1 = 0 in u > a) at a finite u-value.

• One may calculate the expansion, shear

and rotation (the kinematic variables) cor-

responding to this two-dimensional defor-

mation. See IC, SK (EPJP, 2022).



Qualitative picture: ring of particles, mem-
ory as a permanent change of shape.

u

u

Pulse

Pulse

Circle Circle

Circle Ellipse

No memory

Memory

We have ‘realised’ this picture using geodesics
and geodesic deviation in pp-wave space-
times. IC & SK, EPJP (2022). We now
look at test strings.



MEMORY IN CLOSED STRINGS

• Ring of particles → continuum generali-

sation → closed string.

• Look at string propagation in a pp-wave

geometry where we have a square pulse.

• Question: Imagine a closed circular string

in the past. What happens to it after it in-

teracts with a pulse?

• Check out the string profile in the future

when there is no pulse.

• Is there a permanent change? In what

sense?



• 4D background metric gij. Embedding
xi(τ, σ), where τ, σ are world sheet coordi-
nates. Nambu-Goto string.

• String equations of motion and constraints:

ẍi − xi
′′
+Γi

jk

(
ẋjẋk − xj

′
xk

′
)
= 0

gijẋ
ixj

′
= 0 , gijẋ

iẋj + gijx
i′xj

′
= 0

dot, prime → differentiation w.r.t. τ ,σ. In-
duced metric γab = gij∂ax

i∂bx
j diagonal.

• Solve eqns. and constraints in a back-
ground pp-wave with a chosen pulse in gij.

• Some earlier works on strings in pp-wave
spacetimes: Amati and Klimcik (1988),
Horowitz and Steif (1990), de Vega and
Sanchez (1992), de Vega, Ramon-Medrano
and Sanchez (1993).

• Recent: Liˇska and von Unge (2022).



• Goal: For a square pulse, find xi(τ, σ) in
the regions before the pulse arrives, during
its existence and after it departs.
• pp-wave spacetime:

ds2 = F (u, x, y)du2 − 2dudv + dx2 + dy2

F (u, x, y) = W (u)(x2 − y2)

• x, y equations:(
∂2τ − ∂2σ

)
x =

p2

2
∂xF(

∂2τ − ∂2σ
)
y =

p2

2
∂yF

• Procedure: u = pτ solves u equation.
Given F one can find x and y, which can
be used to find v. Choose the W in F and
solve for x, y and obtain v.

• Separation of variables:

x(τ, σ) = (cos k1σ)x(τ)

y(τ, σ) = (sin k1σ) y(τ)



• Equations for x(τ) and y(τ):

ẍ+
(
k21 − p2W (τ)

)
x = 0

ÿ +
(
k21 + p2W (τ)

)
y = 0

where the dot denotes differentiation w.r.t.

τ (or, equivalently, u – except a constant

factor ‘p’).

• Initial profile: In the remote past when

W (τ) is zero we assume

x(τ, σ) = R cos k1τ cosk1σ (1)

y(τ, σ) = R cos k1τ sink1σ (2)

which yields a circle with radius R cos k1τ ,

in the past.

• Future profiles:

We now focus on the full profiles, espe-

cially in future.



Pulsating string before the pulse arrives.

Region τ ≤ 0 :

u =
k1R√

2
τ ; v =

k1R√
2
τ

x = R cos k1τ cos k1σ ; y = R cos k1τ sin k1σ

Singular worldsheet. Circular string.



String during the pulse duration.

Region 0 ≤ τ ≤ T :

u =
k1R√

2
τ ;

x = R cos k2τ cos k1σ ; y = R cos k3τ sin k1σ

where,

k2 =
√
k21 −W0p

2 ; k3 =
√
k21 +W0p

2

v(τ, σ) = −
R

2
√
2

cos 2k1σ

k21
G0(τ) +H0(τ)

where,

G0(τ) = k1k2 cos k2τ sin k2τ − k1k3 cos k3τ sin k3τ

and

H0(τ) =
k1R√

2
τ +

k21 − k22
2
√
2k1

R

(
sin(2k2τ)

2k2
−

sin(2k3τ)

2k3

)

Note the profiles for τ ≤ 0 and 0 ≤ τ ≤ T

match at τ = 0.



String after the pulse departs.

Region τ ≥ T :

x(τ, σ) = R

(
cos(k2T )cos[k1(τ − T )]−

k2

k1
sin(k2T )sin[k1(τ − T )]

)
cos(k1σ)

y(τ, σ) = R

(
cos(k3T )cos[k1(τ − T )]−

k3

k1
sin(k3T )sin[k1(τ − T )]

)
sin(k1σ)

u =
k1R√

2
τ ; v(τ, σ) = −

R

2
√
2

cos 2k1σ

k2
1

G(τ) +H(τ)

where,

k2 =
√

k2
1 −W0p

2 ; k3 =
√

k2
1 +W0p

2

G(τ) =
1

2

(
k2
1 cos

2 k2T − k2
2 sin

2 k2T
)
sin 2k1(τ − T )

+k1k2 cos k2T sin k2T cos 2k1(τ − T )

−
1

2

(
k2
1 cos

2 k3T − k2
3 sin

2 k3T
)
sin 2k1(τ − T )

−k1k3 cos k3T sin k3T cos 2k1(τ − T )

H(τ) =
R

2
√
2k1

(
k2
1 cos

2 k2T + k2
2 sin

2 k2T + k2
1 cos

2 k3T + k2
3 sin

2 k3T
)
(τ − T )

+
k1R√

2
T +

k2
1 − k2

2

2
√
2k1

R

(
sin(2k2T )

2k2
−

sin(2k3T )

2k3

)

The profiles for τ ≥ T and 0 ≤ τ ≤ T match

at τ = T . v has a derivative discontinuity.



xy profile after the wave departs. Initially

circular.
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Change of shape. Circle→ ellipse



String shape before and after: xyz’ profile
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xyz′ profile over extended time.

Note compact shape. Wrapped strings.



The xyu profiles. Before (left), after( right).

No singularities on worldsheet. Note the

degenerate ellipses along x, y in the right.



Worldsheet geometry

• Induced worldsheet metric (before the

pulse):

ds2τ≤0 = R2k21 cos2 k1τ
(
−dτ2 + dσ2

)
The metric is degenerate (zero determi-

nant) at all τ = (2n+1)π
2k1

(n = 0,1,2....).

For τ ≥ T metric is given as:

ds2 = Ω2(τ, σ)
(
−dτ2 + dσ2

)
where

Ω2(τ, σ) = R2 sin2 k1σ [k1 cos k2T cos k1(τ − T )− k2 sin k2T sin k1(τ − T )]2 +

R2 cos2 k1σ [k1 cos k3T cos k1(τ − T )− k3 sin k3T sin k1(τ − T )]2

Is this metric never degenerate?Possible

if Ω2(τ, σ) is not zero for any value of τ , σ.

Ω2 is a sum of two squares, it can only be

zero if the individual terms are both zero.



This seems possible, if

k2 tan k2T = k3 tan k3T = k1
ν

where tan k1(τc − T ) = ν. Also, we have

k2 < k3 and k22 + k23 = 2k21.

For example, assuming, in appropriate units, k1 = 5√
2
, k2 = 3

and k3 = 4, we can easily see that T = mπ solves the first

equation. Using m = 1, we get one value τc = π(1 +
√
2

10
)

(others are there too) from the second equation. In fact,

T = mπ will always satisfy the first equation as long as k2, k3

are integers satisfying the previously stated constraints.

Hence, at such τ values, for the specific T ,

one does get Ω2 = 0, but, for all other T

one can have Ω2 ̸= 0 everywhere.

Therefore, if the pulse is such that its width

T is different from the set of T values which

yield Ω2 = 0 at some τ = τc, one does in-

deed end up with a non-degenerate metric.



• Worldsheet Ricci scalar

The Ricci scalar R of the two dimensional

worldsheet also undergoes a change in char-

acter after the passage of the pulse.

Recall that the expression for the Ricci

scalar in terms of the conformal factor Ω2

is

R = −
2

Ω2

(
−

∂2

∂τ2
+

∂2

∂σ2

)
lnΩ

The denominator factor in the above ex-

pression can lead to a worldsheet singular-

ity where Ω2 = 0.

Thus, singularities always exist prior to the

arrival of the pulse, but may get removed

(depending on the value of T for the pulse)

after its passage.



Sech-squared pulse

Pulse:
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Shape change from circle (yellow) to el-
lipse (blue). More details in AD & SK
(PRD (2024).



RESULT

• A closed string in a pp-wave spacetime

which has a degenerate, singular world-

sheet and circular xy plane profiles,

can, after meeting a GW pulse, evolve

• into a string with a non-degenerate, non-

singular worldsheet metric and non-circular

xy plane profiles.

The GW pulse inflicts a permanent change

in the character of the string and the world-

sheet.

The string carries the memory of the pulse

permanently as it evolves into the future!

More details in AD & SK, Phys. Rev. D

(October 2024).



ELECTROMAGNETIC
MEMORY



ELECTROMAGNETIC MEMORY

• In analogy with gravitational wave mem-

ory, electromagnetic memory is conven-

tionally defined also through a ‘permanent

change’– the so-called ‘velocity kick’.

• First briefly discussed by Grishchuk and

Polnarev (1989) and recently re-analysed

by Bieri and Garfinkle (2013).

• Defined (for a specific case where the

force is qE and unit mass) using the fol-

lowing simple equation:

v∞ − v−∞ = q
∫ ∞

−∞
E dt

E is the electric field, usually taken as a

radiation field due to a source far away.



• If one considers an electric field which

is non-zero and constant only over a small

interval (0,T) in time, then

v∞ − v−∞ = qE0T

The velocity at negative infinity has a dif-

ferent value compared to the value at pos-

itive infinity.

• Implies a jump or a kick in the velocity,

imparted to the charged test particle by

the electric pulse.

• Conventionally one considers the electric

field due to radiation–say, electric dipole

radiation (far away from the source) – and

its effect on a test charge.



DIPOLE FIELD EXAMPLE

m¨⃗x = qE⃗ ; ∆v⃗ =
q

m

∫ ∞

−∞
E⃗ dt

Nonrelativistic, far from source, dipole mo-

ment p⃗(t) = p(t)k̂, magnetic field small, ig-

nored.

E⃗rad =
µ0
4πr

p̈(tr) sin θ θ̂

∆vθ =
q

m

µ0 sin θ

4πr

(
dp

dt
(t → ∞)−

dp

dt
(t → −∞)

)
Consider systems which at large positive

and negative times consist of widely sep-

arated charges each moving at constant

velocity. This gives,

dp

dt
=
∑
k

qkvk

Thus, we find a velocity kick

∆vθ =
q

m

µ0 sin θ

4πr

∑
k

qkvk(t → ∞)−
∑
k

qkvk(t → −∞)





PULSE INDUCED MEMORY-LIKE EFFECT?

• B = B k̂ (B constant). Motion of a charge
is a circle (cyclotron motion). Add an elec-
tric field in the xy plane:

E = E(t)
(
cos α̂i+ sin α̂j

)
where E is chosen as the following function
(a square pulse):

E(t) = 0, −∞ ≤ t ≤ 0

= E, 0 ≤ t ≤ T (3)

= 0 t ≥ T

• How does the motion change after the
pulse is switched off?



• Equations of motion of a test charge, in

the interval (0, T ) (where the electric pulse

acts), are given as mdv
dt = qE + qv × B. In

component form:

m
dvx

dt
= qE cosα+ qvyB

m
dvy

dt
= qE sinα− qvxB

m
dvz

dt
= 0

q and m are the charge and mass of the

particle and v = (vx, vy, vz) is its velocity

vector.

• In the other two regions, i.e. for t ≤ 0

and t ≥ T , the same equations hold with

E = 0.

• The vz equation is trivially solved and we

assume vz = 0 by setting the integration

constant to zero, thereby restricting the

motion of the charge to the xy plane.



• Solutions for x, y and vx, vy in all three

equations can be found.

• Initial circular path (before pulse):

x(I) = A0 sin ωBt−D0 cos ωBt+ C0

y(I) = A0 cos ωBt+D0 sin ωBt+ C′
0

(
x(I) − C0

)2
+
(
y(I) − C′0

)2
= A2

0 +D2
0

Centre at (C0, C
′
0), radius

√
A2
0 +D2

0.

• Final circle (after pulse):(
x(III) −

(
C0 +

E

B
(sin α)T

))2

+
(
y(III) −

(
C ′

0 −
E

B
(cos α)T

))2

= R2
f

Centre at
(
C0 + E

B
(sin α)T,C ′

0 − E
B
(cos α)T

)
.

Radius:

R2
f =

[
A0 +

2E

ωBB
sin

ωBT

2
cos
(
ωBT

2
+ α

)]2
+[

D0 +
2E

ωBB
sin

ωBT

2
sin
(
ωBT

2
+ α

)]2



Before the pulse (blue) and after (red):

-6 -4 -2 0 2 4 6 8

-5

0

5

The blue (red) curve traces the motion of the charged particle

before (after) the electric pulse is injected. Parameter values

(in respective units): A0 = 3, D0 = 4, C0 = 1, C ′
0 = 2, ωB = 1,

α = 2π, T = 2, E
B

= 0.8. Centre of blue curve at (1,2), radius

5 units. Red curve centre at (1,0.4) and radius 6.28 units.

Larger radius, shift of centre.



Before the pulse (blue) and after (red):

-1.0-0.50.0 0.5 1.0 1.5 2.0 2.5
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3.0

3.5

Parameter values (in respective units) are: A0 = −0.6, D0 =

−1.2, C0 = 1, C ′
0 = 2, ωB = 1, α = 2π, T = 2, E

B
= 0.8. Centre

of blue curve at (1,2), radius 1.342 units. Red curve centre

at (1,0.4) and radius 0.144 units. Here, the radius is smaller.

Smaller radius, shift of centre.



Pair of trajectories, separation

-1 0 1 2 3

0

1

2

3

4

Figure above: initial circles (before pulse) of radii Ri1 (blue)
and Ri2 (yellow). Figure below: final circles (after pulse) of
radii Rf1 (blue) and Rf2 (yellow). Chosen values are A01 =

D01 = 1/
√
2, A02 = D02 =

√
2, C01 = C02 = 1, C ′

01 = C ′
02 = 2,

ωB = 1, T = π, E
B

= 0.5, α = π
4
. ∆Ri ̸= ∆Rf and ∆vi ̸= ∆vf .

∆Ri = 1, ∆Rf = 0.8219. Concentric centre of the two particles
initially at (1,2). After pulse, shifts to (2.11,0.89).

0 1 2 3 4 5

-1

0

1

2

3

Change of separation, relative velocity



Evolution: Initial circle (green),during pulse

(blue), final circle (red):

-2 0 2 4 6 8 10 12
-20

-15

-10

-5

0

5
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The red circle (pre-pulse) is from t = −7 to t = 0 (clockwise).

The blue curve is from t = 0 to t = 5 and the green circle

(post-pulse) is from t = 5 to t = 15 (clockwise). The points

t = 0 and t = 5 are the locations where the red, blue and the

blue, green curves meet tangentially. Chosen parameters are:

ωB = 1, T = 5, α = 2π, A0 = 1, D0 = 2, C0 = 3 and C ′
0 = 4,

E
ωBB

= 3.



Particle stuck and static later.
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The circular path (green) before the arrival of the pulse. The

blue (red) curve traces the motion of the charged particle

during the period when the electric pulse is present. The red

dot at the end of the blue curve shows the static particle

after the pulse has departed. Parameter values chosen (in

respective units) are: A0 = −0.727, D0 = −1.133, C0 = 1,

C ′
0 = 2, ωB = 1, α = 2π, T = 2, E

B
= 0.8. The centre of the

green curve is at (1,2) and its radius is 1.342 units. The

location of the static particle at late times is at (1,0.4).

• With properly tuned initial conditions one
may end up with x, y as constant.



• Some numbers:

We assume:

m = 3.3 × 10−27 kg (deuteron), q = 1.6 ×
10−19 C, B = 1.5 Tesla, α = 2π.

Thus ωB = 72.7× 106 rad/s which is in the
radio frequency range (around 12 MHz).

We assume T = 10 nanoseconds and E =
50 MegaVolts/m. The constants are cho-
sen as A0 = 0.30 m, D0 = 0.40 m C0 = 0.60
m and C′

0 = −0.10 m.

The chosen values yield the following:

Initial trajectory: Centre at (0.60,−0.10),
Radius Ri = 0.50m and vi = 0.12c.

Final trajectory: Centre at (0.60,−0.43),
Radius Rf = 0.64m and vf = 0.16c.

All the velocities are non-relativistic in value.



• What current J produces the electric pulse?
The electric pulse is written as

E = E [Θ(t)−Θ(t− T )]
(
cos α î+ sin α ĵ

)
.

This gives J (in vacuum) equal to

J = ϵ0E [δ(t)− δ(t− T )]
(
cos α î+ sin α ĵ

)
.

The current spike at t = 0, creates the
uniform electric field sustained till t = T .
At t = T , an opposite spike reduces the
net electric field to zero.

• Permanent change which persists. Caused
by a time-dependent pulse.

• Not quite a wave-induced memory as
seen with the dipole field or in GW cases
discussed.

• Could possibly be seen in cyclotron ex-
periments.

Ref: SK (in preparation)



CONCLUDING SUMMARY

• In a pp-wave geometry with a square

pulse profile, geodesic motion shows dis-

placement and velocity memory.

• Treating a ring of particles using geodesics

one obtains the change of shape from a

circle to an ellipse, caused by a square

pulse.

• The evolution of a test string in a pp-

wave, using string equations of motion and

constraints with a square pulse, display a

change of shape of a closed string from a

circle to an ellipse.

• Worldsheet features can show a change

due to GW pulse in a pp-wave, in terms

of a degenerate, singular worldsheet ge-

ometry in the past to a nonsingular, non-

degenerate worldsheet in the future.



• In the motion of test charge in a con-

stant magnetic and a short duration elec-

tric pulse one notices a change in the ra-

dius of cyclotron motion, a shift of the

centre and a velocity kick.

Pairs of trajectories also show a change in

relative separation.

On the whole, these results are similar to

a velocity kick as well as a displacement

memory-like effect triggered by a square

electric pulse.



SOME OPEN ISSUES

• One can construct newer examples using

test particles and strings with various pulse

shapes in a pp-wave geometry.

• It is important to also figure out a ‘no

memory’ example. What pulses will have

no memory?

• It is also possible to use more general

spacetimes with non-planar wavefronts (eg.

Kundt waves) and re-do these studies.

• Making these studies observationally rel-

evant remains a bigger challenge.

• In the electromagnetic memory context

one may look for studying the memory-

like effect in cyclotron motion with smooth

electric field pulses, such as a Gaussian or

a sech-squared.


