## The Distribution of Cold Gas in the Local Universe

#### NISHIKANTA KHANDAI

NISER, Bhubaneswar

#### 25 April 2024, IIT Madras

With Saili Dutta, Sandeep Rana, Biprateep Dey and Tanya Tripty

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

## Evolution of Neutral Hydrogen (HI)



・ロト ・ 四ト ・ ヨト ・ ヨト

Ali & Bharadwaj 2005

## A Multi-Wavelength View of M51



https://ecuip.lib.uchicago.edu

## **Quasars and Star Formation**



**NK**et al 2012

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

#### Baryonic Effects: The Galaxy Stellar Mass Function



Mutch et al 2013

## Cold Gas and Star Formation



Leroy et al 2008

### Cold Gas and Star Formation



Leroy et al 2008

#### HI and Galaxy Formation



Madau and Dickinson. 2014

## HI and Galaxy Formation



Madau and Dickinson. 2014

## HI and Galaxy Formation



Rhee et al. 2018

## **ALFALFA** Data

- ALFALFA 40% catalog
  - $\label{eq:results} \begin{array}{l} \bullet \ 7^h 30^m < \!\! R.A. < 16^h 30^m, \\ 4^\circ < {\rm dec.} < 16^\circ, 24^\circ < {\rm dec.} < 28^\circ \\ {\rm and} \ 22^h < \!\! R.A. < 3^h, \\ 14^\circ < {\rm dec.} < 16^\circ, 24^\circ < {\rm dec.} < 32^\circ \\ \end{array}$
  - 15855 galaxies
- Cuts:
  - cz < 15000 Km/s
  - only code 1 galaxies (S/N > 6.5)
  - 10785 galaxies
- SDSS-ALFALFA common patch catalog
  - 4 sub-regions shown with black boundary
  - 8344 galaxies
  - angular area  $\sim$  2100 deg^2
  - comoving volume of  $\sim 2.1 \times 10^6 \ Mpc^3$
- Estimate bivariate  $\phi = \phi(M_{HI}, w_{50})$ Method : 2DSWML



Haynes M. P., et al., 2011, AJ, 142, 170 => < ≡> < ≡> = ∽ < ∾

## SDSS



メロトメロ・メルトメルト 油 ろくの

## ALFALFA



メロトメロ・メルトメルト 近 ろくの

#### ALFALFA and SDSS



Figure: Dutta, NK, Dey 2020

イロト イ理ト イヨト イヨト

#### Estimation of HIMF & HIWF



◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

#### HIMF & HIWF for the Red & Blue Populations



Figure: Dutta, NK, Rana 2022

◆ロ▶ ◆□▶ ◆臣▶ ◆臣▶ ●臣 - の々で

## **Conditional HIMF**

$$\phi(M_{\rm HI}|X^t) = \phi(M_{\rm HI})|_{X>X^t}$$

$$\phi(\mathbf{M}_{\mathsf{HI}}|\mathbf{C}_{ur}^{t},\mathbf{M}_{r}^{t}) = \phi(\mathbf{M}_{\mathsf{HI}})|_{(\mathbf{C}_{ur} > \mathbf{C}_{ur}^{t}),(\mathbf{M}_{r} < \mathbf{M}_{r}^{t})}$$

$$\Omega_{\mathrm{HI}}^{\mathrm{norm}}(C_{ur}^{t}, M_{r}^{t}) = \frac{\Omega_{\mathrm{HI}}(C_{ur}^{t}, M_{r}^{t})}{\Omega_{\mathrm{HI}}^{\mathrm{tot}}} = \frac{1}{\Omega_{\mathrm{HI}}^{\mathrm{tot}}\rho_{c}} \int_{0}^{\infty} M_{\mathrm{HI}} \phi(M_{\mathrm{HI}}|C_{ur}^{t}, M_{r}^{t}) dM_{\mathrm{HI}}$$
$$\Omega_{\mathrm{HI}}^{ij} = \int_{M_{r}^{i}}^{M_{r}^{i+1}} \int_{C_{ur}^{j}}^{C_{ur}^{i+1}} \frac{\partial^{2}\Omega_{\mathrm{HI}}^{\mathrm{norm}}(C_{ur}, M_{r})}{\partial C_{ur}\partial M_{r}} dC_{ur} dM_{r}$$
$$= \int_{M_{r}^{i}}^{M_{r}^{i+1}} \int_{C_{ur}^{j}}^{C_{ur}^{j+1}} \rho(\Omega_{\mathrm{HI}}^{\mathrm{norm}}(C_{ur}, M_{r})) dC_{ur} dM_{r}$$

## Distribution of $\Omega_{HI}(M_r, C_{ur})$



Figure: Dutta, NK, 2021

# Galactic Halos in Dark Matter Simulations (Klypin et al 2016)



 $\begin{array}{ll} \text{MDPL2: } L_{box} = 1 \, Gpc/h & \text{N}_{part} = 3840^3 & m_{dm} = 1.5 \times 10^9 \, M_{\odot}/h \\ \text{SMDPL2: } L_{box} = 400 \, Mpc/h & \text{N}_{part} = 3840^3 & m_{dm} = 10^8 \, M_{\odot}/h \\ \end{array}$ 

#### The Halo Mass - Stellar Mass relation



A D > A P > A D > A D >

Behroozi et al 2019

#### The HI-Selected HMF



▲日▼▲□▼▲目▼▲目▼ 目 のへの

## Consistency Check: The HI Mass - Halo Mass Relation



◆ロト★園▶★恵▶★恵▶ 恵 のなぐ

# Abundance Matching with Scatter (Behroozi et al 2010)

 $M \equiv \log_{10} M$ 

$$\phi(M_{\rm HI}) = \int_0^\infty \phi^{\rm HI}(M_{\rm halo})\phi(M_{\rm HI}|M_{\rm halo})dM_{\rm halo}$$
(1)

$$\phi(M_{\rm HI}|M_{\rm halo}) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[\frac{-\left(M_{\rm HI} - M_{\rm HI}(M_{\rm halo},\sigma)\right)^2}{2\sigma^2}\right]$$
(2)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Solve iteratively for  $M_{HI}(M_{halo})$  for a given  $\sigma$ 

#### Abundance Matching with Scatter contd.



◆ロ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

#### Abundance Matching with Scatter contd.



◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 − のへぐ

The next 20 slides discussed results from ongoing, unpublished work, namely:

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- Clustering Predictions of gas-rich galaxies
- The Stellar Mass function of gas-rich galaxies

Interested people can contact me in case they need to discuss anything related to the above mentioned results.