COSMIC INFLATION: WARM OR COLD?

MAYUKH RAJ GANGOPADHYAY Saha Institute of Nuclear Physics

Indian Institute Of Technology, Madras Chennai, 05.03.2019

IIT-M, Chennai 05.03.2019 1 / 32

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

Presentation Outline

2 Basic Inflationary Dynamics

3 LITTLE WARM INFLATION

4 Analysis

5 WHAT'S THE FUTURE?

GUTH'S DIARY!!

"Historical motivation for inflation arose largely on philosophical ground." - A. Linde

イロト 不得 トイヨト イヨト 二日

GUTH'S DIARY!!

"Historical motivation for inflation arose largely on philosophical ground." - A. Linde

the universe today is so incredibly flat - and therefore why resolve the fire-tuning paradox painted out by Beb Dicke in his Einstein day lectures. Let me first rederive the Dicke paradox. He relies on the empirical feet the the	т	his	Kind	of .	superc	coling	can	ex	plain	why	,
therefore the fine-tuning paradox pointed out by Bab Dicke in his Einstein day lectures. Let me first rederive the Dicke paradox. He relies on the empirical fact the the	the u	iniverse	+.	day	is	50	incred	ibly	flat		4-10
Let me first rederive the Dicke paradox. He relies on the empirical fact the the	therefo	ra -	why	resolve	+	he	fine- +.	ining	para	adox	
Let me first rederive the Dicke paradox. He relies on the empirical fact the the	pointed	out	by	Bob	Dicke	in	hts	Eine	tein	den	
Let me first rederive the Dicke paradox. He relies on the empirical freet the the											
Let me first rederive the Dicke paradox. He relies on the empirical feet the the	lecture									2.9	
Let me first rederive the Dicke paradox. He relies on the empirical feet the the	lecture	s .								5.9	
He relies on the empirical feet the the	lecture	s									
He celles on the empirical test the the	lectures	s .	first								
	lecture:	s	firet	rede	erive	the	Dick		rado;	x	

FLATNESS PROBLEM

- Why our universe is almost perfectly flat? This is also known as the age problem...
- Friedmann equation: $|1 \Omega^{-1}|\rho a^2 = \frac{-3k}{8\pi G}$

イロト 不得 トイヨト イヨト 二日

FLATNESS PROBLEM

• Why our universe is almost perfectly flat? This is also known as the age problem...

Solving Flatness Problem

Solving Flatness Problem

INFLATION MODELS!!

◆□ → ◆圖 → ◆臣 → ◆臣 → □臣

INFLATION MODELS!!

Another Inflation!!

INFLATION MODELS!!

Another Inflation!!

Only two dynamical realization \Rightarrow Warm or Cold!!

Presentation Outline

3 LITTLE WARM INFLATION

4 Analysis

э

COLD INFLATION

•
$$\left| \frac{\ddot{a}}{a} = -\frac{4\pi G}{3} (\rho + 3p) \right|$$

•
$$\dot{\rho} = -3H(\rho + p)$$

•
$$|\ddot{a} > 0 \Rightarrow p < -\rho/3$$

•
$$\left|\ddot{\phi} + 3H\dot{\phi} - \frac{1}{a^2(t)}\nabla^2\phi - \frac{\partial V}{\partial\phi} = 0\right|$$

•
$$\rho_R \sim \rho_{RI} Exp[-4\sqrt{8\pi GV_0/3}t]$$

SCALE FACTOR EQN.

ENERGY CONSERVATION EQN.

SCALAR FIELDS.

G.R VERSION OF K-G Eqn.

RADIATION DECAY EQN.

• $|a_f/a_i = Exp[N_e] => T(t) = T_i(a_i/a(t))$ SUPERCOLD UNIVERSE.

イロト 不得 トイヨト イヨト 二日

COLD INFLATION

•
$$\frac{\ddot{a}}{a} = -\frac{4\pi G}{3}(\rho + 3p)$$
 So
• $\dot{\rho} = -3H(\rho + p)$ EN
• $\ddot{a} > 0 \Rightarrow p < -\rho/3$ So
• $\ddot{\phi} + 3H\dot{\phi} - \frac{1}{a^2(t)}\nabla^2\phi - \frac{\partial V}{\partial\phi} = 0$ G.
• $\rho_R \sim \rho_{RI} Exp[-4\sqrt{8\pi GV_0/3}t]$ R.

Scale Factor Eqn.

ENERGY CONSERVATION EQN.

SCALAR FIELDS.

G.R VERSION OF K-G EQN.

RADIATION DECAY EQN.

< □ > < □ > < □ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > ⊇
 IIT-M, Chennai 05.03.2019

8/32

• $|a_f/a_i = Exp[N_e] => T(t) = T_i(a_i/a(t))$ SUPERCOLD UNIVERSE.

Inflation \rightarrow Cold Universe \rightarrow Reheating \rightarrow Radiation Domination...

WARM VS COLD INFLATION

WARM INFLATION

•
$$\left|\ddot{\phi} + (3H + \Upsilon)\dot{\phi} - \frac{1}{a^2(t)}\nabla^2\phi + V_{,\phi} = \zeta\right|$$
 W.I. Equivalent Form.

 $\bullet \left| \dot{\rho}_V = -\Upsilon \dot{\phi}^2 \right|$

•
$$\dot{\rho}_r = -4H\rho_r + \Upsilon \dot{\phi}^2$$

$$\bullet \left| \rho_R \sim \frac{C}{4H} + (\rho_{R0} - \frac{C}{4H}) e^{-4Ht} \right|$$

POTENTIAL ENERGY DISSIPATION.

RADIATION ENERGY EQN.

FOR CONSTANT DISSIPATION.

イロト イヨト イヨト イヨト

WARM INFLATION

•
$$\ddot{\phi} + (3H + \Upsilon)\dot{\phi} - \frac{1}{a^2(t)}\nabla^2 \phi + V_{,\phi} = \zeta$$
 W.I. Equivalent Form.

• $\dot{\rho}_V = -\Upsilon \dot{\phi}^2$

•
$$\dot{\rho}_r = -4H\rho_r + \Upsilon \dot{\phi}^2$$

$$\bullet \left| \rho_R \sim \frac{C}{4H} + (\rho_{R0} - \frac{C}{4H}) e^{-4Ht} \right|$$

POTENTIAL ENERGY DISSIPATION.

RADIATION ENERGY EQN.

FOR CONSTANT DISSIPATION.

< □ ▶ < ⑦ ▶ < ≧ ▶ < ≧ ▶ ≧ ≥ IIT-M, Chennai 05.03.2019

10/32

Inflation + Reheating \rightarrow Radiation Domination...

A. Berera and L. -Z. Fang, Phys. Rev. Lett. 74, 1912 (1995),

A. Berera, Phys. Rev. Lett. 75, 3218 (1995).

WARM VS COLD INFLATION

- Vacuum Energy ($E_V \equiv \rho_V^{1/4}$), Radiation Energy ($E_R \equiv \rho_R^{1/4}$),
- Hubble Scale (*H*), Inflaton mass $(m \equiv V(\phi)'')$,
- Dissipation Coefficient(𝑋).

WARM VS COLD INFLATION

- Vacuum Energy ($E_V \equiv \rho_V^{1/4}$), Radiation Energy ($E_R \equiv \rho_R^{1/4}$),
- Hubble Scale (*H*), Inflaton mass $(m \equiv V(\phi)'')$,
- Dissipation Coefficient(𝑋).

Cold Inflation	Warm Inflation
$E_V > E_R$	$E_V > E_R$
H > m	$max(\Upsilon, H) > m$
$m > E_R$	$E_R > m$
$H >> \Upsilon$	$\Upsilon > 3H$ (Strong)
	$\Upsilon < 3H$ (Weak)

BARRING THE FACT..

Is Warm Inflation Possible?

Jun'ichi Yokoyama Department of Physics, Stanford University, Stanford, CA 94305-4060 and Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan

Andrei Linde Department of Physics, Stanford University, Stanford, CA 94305-4060, USA (August 17, 1998)

We show that it is extremely difficult and perhaps even impossible to have inflation supported by thermal effects.

PACS: 98.80.Cq

SU-ITP-98-52

YITP-98-49

hep-ph/9809409

IIT-M, Chennai 05.03.2019 12 / 32

人口区 人間区 人居区 人居区 一日

BARRING THE FACT..

Jun'ichi Yokoyama Department of Physics, Stanford University, Stanford, CA 94305-4060 and Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan

Andrei Linde Department of Physics, Stanford University, Stanford, CA 94305-4060, USA (August 17, 1998)

We show that it is extremely difficult and perhaps even impossible to have inflation supported by thermal effects.

PACS: 98.80.Cq

SU-ITP-98-52

YITP-98-49

hep-ph/9809409

 $g\phi\psi\psi => m_{\psi} = g\phi, \quad m_{\phi} \sim gT$

WAY OUT:

• BRANE-WORLD SCENARIO:

- Inflaton is indirectly coupled to light DOF through heavy mediator fields.
- Thermal mass corrections are exponentially suppressed and dissipation coefficient is suppressed only by power of $T/M_m \leqslant 1$.
- Requires large multiplicity of mediator fields to sustain thermal bath for 50 60 *e*-folds.

• <u>LITTLE WARM INFLATION:</u>

- Inflaton is a pNGB from a broken gauge symmetry.
- Fermion masses remain light during inflation for an arbitrary inflaton value provided the thermal bath temperature follows some conditions.
- Quadratic divergences and thermal mass corrections cancels thus not ruining the slow roll for prolonged time.

M. Bastero-Gil, A. Berera, R. O. Ramos and J. G. Rosa, Phys. Rev. Lett. 117 (2016) no.15.

Presentation Outline

2 Basic Inflationary Dynamics

4 Analysis

5) What's The Future?

IIT-M, Chennai 05.03.2019 14 / 32

э

QUARTIC LITTLE WARM INFLATION

 $V(\phi) = \lambda \phi^4$ • $\Upsilon = C_T T$ • $\rho_r = \frac{\pi^2}{30} g_* T^4 = C_R T^4$ $Q = \Upsilon/3H$ • $4\rho_R \simeq 3Q(\dot{\phi})^2$

QUARTIC POTENTIAL.

LINEAR DISSIPATION REGIME

RADIATION ENERGY DENSITY.

DISSIPATIVE RATIO.

SRA REGIME.

IIT-M, Chennai 05.03.2019 15 / 32

POWER SPECTRUM

• Q_e can be computed from:

$$Q^3(1+Q)^2 = rac{4}{9}\left(rac{C_T^4}{C_R\lambda}
ight)\left(rac{m_P}{\phi}
ight)^6$$

• Scalar power spectrum is given as:

$$P_{R} = \left(\frac{H_{*}}{\dot{\phi}_{*}}\right)^{2} \left(\frac{H_{*}}{2\pi}\right)^{2} \left[\frac{T_{*}}{H_{*}}\frac{2\pi Q_{*}}{\sqrt{1+4\pi Q_{*}/3}} + 1 + 2N_{*}\right]$$
$$P_{R} = \frac{C_{T}^{4}}{4\pi^{2} \times 36C_{R}}Q_{*}^{-3}\left[\frac{3Q_{*}}{C_{T}}\frac{2\pi Q_{*}}{\sqrt{1+4\pi Q_{*}/3}} + 1 + 2N_{*}\right] \times G[Q_{*}]$$

• The tensor spectrum is defined to be:

$$P_T = 8 \left(\frac{H_*}{2\pi m_p}\right)^2 = \frac{8\lambda^{1/3}}{4\pi^2} \left(\frac{4C_T^4}{9C_R}\right)^{2/3} \frac{1}{Q_*^2(1+Q_*)^{2/3}}$$

Bastero-Gil, Bhattacharya, Dutta, MRG [JCAP 1802 (2018) NO.02, 054]

Model Parameters

- Model parameters: C_T , λ , g_* .
- No. of e-folds $(N_e(k))$ is defined as:

$$56.12 - \ln \frac{k}{k_0} + \frac{\ln \frac{2}{3}}{3(1+\tilde{w})} + \ln \frac{V_k^{1/2}}{V_{end}^{1/2}} + \frac{1-3\tilde{w}}{3(1+\tilde{w})} \ln \frac{\rho_{RH}^{1/4}}{V_{end}^{1/4}} + \ln \frac{V_{end}^{1/4}}{10^{16}}$$

•
$$\tilde{w} = 1/3$$
 reduces $N_e(k)$.

$$N(k) = 56.02 - \ln \frac{k}{k_0} + \ln \frac{V_k^{1/2}}{V_{end}^{1/2}} + \ln \frac{V_{end}^{1/4}}{10^{16}\,\mathrm{GeV}}$$

Bastero-Gil, Bhattacharya, Dutta, MRG [JCAP 1802 (2018) NO.02, 054]

< □ > < □ > < □ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > ⊇
 IIT-M, Chennai 05.03.2019

17/32

Scalar Power Spectrum

Primordial spectrum as a function of k/k_0 , for different values of the parameter $C_T = 10^{-7}$, 10^{-6} , $...10^{-1}$ and for fixed $\lambda = 10^{-14}$, $g_* = 12.5$. LHS is for a non-thermal inflaton, i.e, $\mathcal{N}_* = 0$ and RHS is for a thermal inflation, i.e., $\mathcal{N}_* \neq 0$.

人口区 人間区 人居区 人居区 一日

BACKGROUND DEPENDENCE

Spectral index (n_s) as a function of C_T with $g_* = 12.5$ in LHS and as a function of g_* with $C_T = 0.004$ in RHS. The solid lines are for $\mathcal{N}_* = 0$ and the dashed lines are for $\mathcal{N}_* \neq 0$.

< □ ▶ < ⑦ ▶ < ≧ ▶ < ≧ ▶ ≧ ≥ IIT-M, Chennai 05.03.2019

19/32

BACKGROUND DEPENDENCE

Running of the spectral index (α) as a function of C_T with $g_* = 12.5$ in LHS, and as a function of g_* with $C_T = 0.004$ in RHS, for different values of λ as indicated in the plot. The solid lines are for $\mathcal{N}_* = 0$ and dashed lines are for $\mathcal{N}_* \neq 0$.

A B + A B +

Presentation Outline

1 Motivation

2 Basic Inflationary Dynamics

3 LITTLE WARM INFLATION

WHAT'S THE FUTURE?

IIT-M, Chennai 05.03.2019 21 / 32

3

イロト イヨト イヨト イヨト

MCMC Methodology

- $\bullet~\mathrm{MCMC}$ is performed using $\mathrm{COSMOMC}$ package coupled with CAMB.
- Slow mixing an bad convergence in COSMOMC due to multimodality in the theory.

- Increase the temperature of the chains and changing the standard Metropolis-Hastings algorithm to Wang-Landau algorithm.
- In thermal case, hierarchical centering is employed to solve convoluted multimodality.

MCMC SIMULATIONS

IIT-M, Chennai 05.03.2019 23 / 32

◆□ > ◆圖 > ◆臣 > ◆臣 > ─臣

RESULTS

Constraints on cosmological parameters for non-thermal and thermal case compared with $\Lambda CDM + r$ using Planck 2015+BICEP2/Keck Array observations.

		Cold Inflation					
	$\mathcal{N}_{*}=0$		\mathcal{N}_*	≠ 0		$\Lambda CDM + r$	
parameters	mean value	1σ	mean value	1σ	parameters	mean value	1σ
$\Omega_b h^2$	0.02233	0.00022	0.02224	0.00019	$\Omega_b h^2$	0.02224	0.00017
$\Omega_c h^2$	0.1178	0.0015	0.1194	0.0013	$\Omega_c h^2$	0.1192	0.0016
$100\theta_{MC}$	1.04097	0.00046	1.04088	0.00038	100 <i>θ_{MC}</i>	1.04085	0.00034
τ	0.077	0.019	0.068	0.021	τ	0.064	0.018
CT	0.0043	0.0018	0.0104	0.0077	$\ln(A_s \times 10^{10})$	3.06	0.031
λ	9.77×10^{-15}	5.41×10^{-15}	9.74×10^{-16}	6.78×10^{-16}	ns	0.966	0.0052
g*	20.03	10.39	139.91	487.98	r	< 0.07	

人口区 人間区 人居区 人居区 一日

Non-Thermal $CASE(N_* = 0)$

The predictions for the spectral index and tensor-to-scalar ratio for the best-fit and mean value of parameters for non-thermal case($N_* = 0$).

A B < A B </p>

Non-Thermal $Case(N_* = 0)$

The predictions for the spectral index and tensor-to-scalar ratio for the best-fit and mean value of parameters for non-thermal case($N_* = 0$).

Standard cold quartic inflation, $n_s = 1 - \frac{6}{3+2N}$ and $r = \frac{32}{3+2N}$ For, N = 60, $n_s = 0.95122$ and r = 0.2602

THERMAL CASE $(N_* \neq 0)$

The predictions for the spectral index and tensor-to-scalar ratio for the best-fit and mean value of parameters for thermal case($N_* \neq 0$).

イロト 不得 トイヨト イヨト 二日

Presentation Outline

1 Motivation

2 Basic Inflationary Dynamics

3 LITTLE WARM INFLATION

4 Analysis

3

イロト イヨト イヨト イヨト

SWAMPLAND CRITERION FIASCO!!

• Swampland criterions states:

1.
$$\boxed{\frac{|\Delta\phi|}{M_{\rho l}} \leqslant \Delta}$$
 2. $\boxed{\left|\frac{V_{\phi}}{V}\right| \geqslant \frac{c}{M_{\rho l}}}$

G. Obied et. al. arXiv:1806.08362 [hep-th].

• None of the single field slow roll cold inflation in standard scenario can survive if these conjectures are true!!

$$\epsilon_V := \frac{M_{pl}^2}{2} \left(\frac{V_\phi}{V}\right)^2 < 1$$

 $\bullet\,$ Warm inflation might survive as the slow roll condition $\Rightarrow\,$

$$\epsilon_\phi < 1+Q\,, \quad \eta_\phi < (1+Q)$$

WARM NATURAL INFLATION

• Natural inflation is disfavoured by Planck18 + BK14 data with a Bayes factor lnB = -4.2.

MRG, Mathews, Nguyen, Suh [In Preparation]

3

イロト 不得 トイヨト イヨト

WARM NATURAL INFLATION

MRG, Mathews, Nguyen, Suh [In Preparation] \leftarrow $\square \rightarrow \leftarrow \square \rightarrow \leftarrow \equiv \rightarrow \leftarrow \equiv \rightarrow$

IIT-M, Chennai 05.03.2019 30 / 32

- 2

CONCLUSIONS

- No reheating is required in warm inflation => Warm exit to the radiation dominated universe.
- Thermal case $(N_* \neq 0)$: tensor-to-scalar ratio is well within the observational bound.
- Bispectrum features are different in cold and warm inflation.
- Warm Little Inflaton as DM? Work in Progress with A. Naskar
- Future observations will lead us to distinguish these features.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

CONCLUSIONS

- No reheating is required in warm inflation => Warm exit to the radiation dominated universe.
- Thermal case $(N_* \neq 0)$: tensor-to-scalar ratio is well within the observational bound.
- Bispectrum features are different in cold and warm inflation.
- Warm Little Inflaton as DM? Work in Progress with A. Naskar
- Future observations will lead us to distinguish these features.

"To me, the accidental Universe idea is scientifically meaningless because it explains nothing and predicts nothing. "-Steinhardt

イロト 不得 トイヨト イヨト 二日

EXTRA

•
$$\phi_1 = \frac{M}{\sqrt{2}} e^{i\phi/M}, \quad \phi_2 = \frac{M}{\sqrt{2}} e^{i\phi/M}$$

•
$$-\mathcal{L}_{\phi\psi} = \frac{g}{\sqrt{2}}(\phi_1 + \phi_2) \ \bar{\psi}_{1L}\psi_{1R} - i\frac{g}{\sqrt{2}}(\phi_1 - \phi_2) \ \bar{\psi}_{2L}\psi_{2R}$$

•
$$-\mathcal{L}_{\phi\psi} = gM \cos(\phi/M) \ \bar{\psi}_1\psi_1 + gM \sin(\phi/M) \ \bar{\psi}_2\psi_2$$

•
$$\sum_{\phi} (0) = g^2 [-\cos(2\phi/M) + \cos(2\phi/M)] I_T = 0$$

32 / 32