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Inflation

m Inflation solves horizon problem and flatness problem.

m Rapid accelerated expansion during the early universe a o et horizon
H~! remains nearly constant —+ H = —4nG (p +p) = p ~ —p.

m For scalar field (@(x,t) = ¢(t) +6dp(x,t) )
12 12
=4 Vo) =2 vie) &

m The dynamics of the inflaton field ¢(t) is given by

$+3HP+V =0 (2)

m For inflation the kinetic energy of @ << potential energy.—

2 2\ 2 . . 2 1
ezﬁﬁ(%) << 1and¢<<3H¢—>nv:%<VV) << L

m The duration of inflation is given as N = f:f Hdt.

m At the end of inflation universe reheats to the GUT scale.
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m € and 1 can also be defined as
H €
€= el n= °H (3)
where 1 = —2ny + 4e€.

m Quantum fluctuations during inflation — scalar and tensor perturbations
in the metric — CMB anisotropy and structures in the universe.

m The scalar perturbations are described by two-point correlation function
for curvature perturbation in Fourier space called as " Power spectrum”
whose amplitude and scale (momentum) dependence are determined by
two-point correlation function of temperature anisotropy of CMB.

m Standard inflationary models predict adiabatic, nearly scale-invariant and
gaussian perturbations which are consistent with the observations.

m Testing Non-gaussianity is a major goal of on-going Planck and other
future experiments and is determined by non-zero higher order correlation
function

m Planck puts tight bounds on non-gaussianity but detects statistical
anisotropy.

m Inflation occurs above GUT scale and stretches out length scales of the
order of Planck length to the current hubble scales so it provides a window
to see the new physics effects on Planck scale.
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Noncommutativity

m Noncommutativity is motivated by Heisenberg uncertainty principle and
Einstein’s gravity.
m It arises in certain theories of gravity and string theory.

m We consider the Groenewold-Moyal (GM) plane defined as
Ky, Xv] =10,y 4)

m 0, is constant, real antisymmetric matrix and X, (x) = x,, in some chosen
coordinate system.

m We take this to be comoving coordinates so
egf = a(t)Go-l, ijh = 0.2 (t)eij (5)

m 0, doesn’t transform as a tensor so breaks Lorentz invariance

m We deform Poincare symmetry to make commutation relations invariant
under this symmetry.
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m Poincare algebra acts on funcions in Minkowski space as
Pof(x) = —104f(x), Mupf(x) = —i(xa0p —xa0p) f(x). (6)
m The algebra of function is commutative with commutative multiplication
mo (f @ g) (x) = f(x)g(x). (7)
m The coproduct acting on the tensor product f ® g is
Ao(X)=1®X+X®I (8)
m Commutative multiplication is changed in GM plane as
me (f®g) (x) = (f*g) (x) = mo [Fof @ gl (x) (9)
where twist element Fo = exp [—$0%FP, ® Ps]. So

i 0 0
(16) () = 50 | 30,0 0 50

} gl (10)

m Twisted coproduct — compatible with x product defined as
Ag = gjalegje.
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Twisted quantum fields

m For multi-particle state twisted coproduct — not compatible with the
statistics operator defined as 1 (b ® x) = (x ® ¢) to construct symmetric
and antisymmetric states i.e

1+
2

GRXs A= TO¢®X (11)

m Define deformed statistics operator To = F5 10T
® In terms of quantum fields we defined deformed quantum field as

where a5 = cﬁe*%vue“""v, a% — céeﬁuewpv
m In terms of usual quantum field
o = doe? 7P (13)
where § AP = 8,85Py and (o  ba) (x) = do(x)et ™ T aly)| _ .
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Perturbations with ADM formalism

m The action for scalar field

S:Jd4x\/jg<

2
M; R+L). (14)

m The background is described by FRW metric
ds?> = —dt® + a®(t) (dx® + dy® + dz%) . (15)
m To do perturbation theory, the metric in ADM formalism is
ds® = —=N?dt® 4 hy; (dx' + N'dt) (dx) + N'dt) (16)

where N is laps function, Ny, Nj are shift vectors and hy; is metric of
three-dimensional hypersurface of constant time.

m We use comving gauge defined as

hij = a?e*“8;5, 6 =0. (17)
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m The action becomes

S— % Jdtdi“xx/ﬂ (NR<3] —ONV(¢) + N1p2 + N~ (E4EY — E2))

(18)
Here R is Ricci scalar calculated using the three-dimensional metric hy;
and Ey; is related to the extrinsic curvature of the constant time

hypersurface

Ey = % (h-lj — VN — viNj) . (19)

m Varying the action we get
R —2V - N72(E4EY — E?) — N2 =0,
v [N*l (E{ - 51E)] =0 (20)

m Decompose N; into irrotational and incompressible parts as N; = =N;+ 0
where 0;N* = 0 and expand N, 1 and Nt into powers of ( as

N = 1+(X1+(X2+ .....
N, = Ni(1]+Ni(2)
v o= bt (21)
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m Using these expansions constraint equations can be solved order by order.
And at first order

¢

~ (1) C '
o =0 Ni o =0,y =7 +x 9 = a’eC (22)

Here 02 = 5Y0;0; and the use of suitable choice of boundary conditions
has been made to put Ngl) =0.

m To compute power spectrum and bispectrum, one needs to expand action
up to 3 order in (. For this we only need N and N; up to first order. We

get
S, = Jdtd3x [a3eé2 - ae(ac)ﬂ (23)
S, = Jdtd3x [faeC(aC)z — a%el® +3a%el
+% (3c - %) (9:0;10 " — 9*Pd*P) — 2a16111)aiC6211)}

(24)
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Two-point function (Power spectrum)

m To compute power spectrum we use S, which in conformal time dt = % is

S, = J drd’xa’e [ — (30)?] (25)

m ( can be expanded as

(%, T) *J (d3k oK, 1)et* ¥ = J ¢’k (u(E, T)ag +u*(—k, T)aiﬁ) etk ¥,

2m)3 (2m)3
(26)
with equation of motion
!
U425 — 2 =0. (27)
z
Here z? = 2a%e.
m Define vi; = ZC(E, T) to get
vig (1e—E ) —o. (28)
4 ol
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m The solution v can be obtained assuming Bunch Davies initial conditions
as

1 i :
= [1-—= 71.le 29
e () *)
m Hence the basis function u(k, 1) is
- Vi iH .
u(k,t) = -* = 1+ ikt) e . 30
=2 = Ve 111 30
m Due to noncommutativity (g (X, t) = {(X, t)e%%HAPV. Two-point

correlation function of deformed quantum field ¢ will be

(CE VG ) = (U t)ed T Pr(g t)ed
= (QF UG, t))e 2 2w Ny, (31)

where [P, {J] = —10,C is used.
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m Taking Fourier transform

(CoX GG 1) = J e (OIE DR, )0)
X ef%%xu/\ay,,el(]z)@rﬂhg)
d3kd3k’ - =
- J s Ole(k (K, Y)I0)
X e —4(000%M05+0501°0,,+05 N0y )e(E,H*,Q)
d3kd3k’ o
= J 2m)° (0l (k, )¢k, t)]0)
x e(%mg+@#a‘7@fﬁa“)ei(ﬁmﬁﬁ)
a3k’ o8 .1 . PR
N J (2m)® <0|C(k-t+ > C( .t—T>o>
~ e%ﬁm& i(K-R+K-7)
(32)
Here@:GOi,
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m In momentum space

- - N I L - 80 . K
(0|Ce(k,t)Ce(k/,t’)0>_ekak<OC<k,t+ 5 )C(k/,t’— 5 0)

(33)
m In de Sitter space t(t) = ﬁe*Ht So in conformal time and in the limit
t—t
? . % 90 .17
C(lz,tJre zk) - C<E,T6’Heﬁk > (34)
? T < -
14 (12, v o . k) - ¢ <12, TeHL%) (35)

m The two-point function will be

N . R 0.1 . 00.% LA
(oK D% ®, D) = (0 (k.we*H ; )c(kweH : )|0>ef“

(2m)38° (K + K) (36)
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® In noncommutative spacetime g (X, t)e (X', t') # o (X, 1) G (R, ) s0 we

—

use % [Ce (X, 1), Ce((x),T)] for two-point correlation function. In Fourier
+
space

(0120 (K, 1120 (K, 110} 1 = 5 (1010 (., 110, )10} + {0lco (R, 7)o (K, )
(37)

m The power spectrum is defined as

(01Ca (K, )2 (K, T)[0)y = (2m°87 (K+K) Pe, (k) (38)
which is
1 L0
Pe, (k) = > (‘u <k, Te' 2 )

2 R ob. & 2
+ ‘u (—k, w*”T)‘ (39)
1

Si hori limi - —i 7H%
Ince on super-horizon limit Vg = e Ge so

Pz, (k) = P (k) cosh (HGTJ : 12) (40)
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Three point function

m For three-point function

S; = Jdtd3x [—aec(ac)2 —a®el®+3ael
+% <3c — ]i) (20,101 — 02>y — 2a1ai¢aica2¢}
m Since p = —% +x and 9%x = a2, so
S; = Jdtd3x {a%ZC? + ae?¢(0¢)? —2ael(d0)(dx) + %%625
5200 + 5 (@ + Jor | | (41)

where F = (n¢? + terms with derivarives of ¢) and Z—E represents the
terms propostional to the Gaussian EOM .
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m Again integrate by parts the action to remove the terms involving 0x and
using the Gaussian field equation
1 oL

_ 3 5 21452425 , L+ 4 OL
537Jdtdx{4aeHCa C+2a?56

] e

Now F = ( — €) C® +2e072(¢d%C) and 072 is the inverse of 02.

m To get rid of the last term in action we use field redefinition
F
(=Gt 70 (43)

BS=S+] dtd3x4a®e2H(2 0 2,.
m So the three-point function becomes
(Cx1)C(x2)C(x3)) = (Gn(x1)Cn(x2)Cnlx3))

(m—e)
4

+ ga;f ((C(x1)2(x2))02, (Cn (x1)Cn (x3)) 4+ permutations) .
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m So the interaction Hamiltonian in noncommutative spacetime is
HH) = — J d3x4a®e®Hig * (o x 0 2o
= — J d3x4a’ ezHézasz'e%ﬁ/\Pv (44)
m Three-point using in-in formalism is

(Co(x1)Co(x2)lalxs)) = fij At (01 [Co (x1)Co (x2) o (x3), FC(')] [0)

_1J dt’ ({0126 (x1) o (x2) o (x3)H(£')]0)

—  {OlH(t")Co(x1)Co(x2)Ca(x3)]0))
(45)

m Let

(a) = 4ie? J dt'aSHJ &0l (x1)Co (320 (x5) 2072 e/ )
| (46)
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m Now writing twisted quantum fields in terms of untwisted quantum fields
—
ColX,t) = (X, t)e? Tn/\Pv | we get

(a)

4ie? J dt/aSHJ a*x(0[¢(x1)C(x2)C(x3)

o (BT B )

% e3Pl APLEIGAP o2 e%x”’IO) (47)
v R

= 4ie? J dt’aSHJ a*x(0[¢(x1)C(x2)C(x3)

T R P

TS ST g (S N
~3 (x40 485)700 2 g)

X
o©

o
Nl

X e
(48)
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m In Fourier space and
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m Here
:P: <]21/\]22+]22/\]23+]21/\]23+ <]21+]22+]23) (E4+E5+E5))
(49)

m Since we need three-point function in Fourier space and t; = t, = t3 =t so

@ = =i @ (s, Dtk Ve, 03()

to

6
— e J dt/a5HJ d3x J 11 ks
L 1322m)9
K

X <O|C(E1,t1)C(E2,t2)C( 3vt3)é“z4vt4)é“z5vt5)é“26vt6)‘0>
«  et(Ka®tKsX4Ke-X) 5P (50)
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m Where

° [~ [~
1S %0. 40.
' <) [=>)
= 4] F
.__w (S IR v
'S %0. \ﬁo.
' <) [=)
) 1] 1
JM 15 1
- R
ers (Vg
=) 1 4
ﬁ [ [~
13 %0. 40.
> o)
L] S
.ﬁ ™ 0
19 ; :
: [s>) [<>}
> ﬁ ﬁ
+ o+ o+
- + +
Il I I
iy oy g

(51)

(52)

©
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m So finally we get

3
(@) = e(2m)%8 (121 S At 123) %:2 11 %
ew o (AR + oA+ AR
x < (k3k3 + perm.)(53)
m Similarly for another term
(b) = 1J:[ dt’{0|H(t') Co(x1) o (x2) Lo (x3)0)
0

H H3 1
= €(27'[)363 (kl + k2 + k3) @ F
i=1 t

o0. ) .
Q*MQM o3 (RiARo+ Ko ARy +K1 A3 )

X < (kik3 + perm.)
(54)

Akhilesh Nautiyal IMSc




m Remind the expression for three-point function

(C(x1)Cx2)C(x3)) = (Cnlx1)Cn(x2)Cn(x3))
m—e)
4

+ ga;f ((C(x1)2(x2)) 02, (Cn (x1)Cn (x3)) + permutations) .

+

(<Cn (Xl ) Cn (X2)> <Cn (Xl ) Cn (X3)> + permutations)

m So the first term in Fourier space is

(Co (K1, t)Co(Ka, t)Co (K3, t))

I L |
2¢(2 353(k i k)— -
€(2m) 1+ K2 + ks 16e2 E @

5HO0 (1 + Ky +K3) o o3 (RIAR 4R AR5 +E1 ARs)

cosh 5

K

X

(k3K3 + perm..)
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m The contribution due to first field redefinition term is

(o x1)Ca (x2)Ca(xs) = 7= ({Co(x1)Ca (x2)) (Co (1) Colxa)) +perm.)
(55)

m Now 3
dsz 1 _1ebi, etke (R1-%2)

(27)3 4e k3 (56)

(Co(x1)Co(x2)) :J

m So

Bhodks H* 1
(2m)°  16€2 k3Kk3

(Co(x1)Co(x2))(Co(x1)Co(x3)) = J

% efHGT‘»(E2+k3)ei(]?g+f€3)42171E2»£271E3<%3
A3k, d3k,d3k
- Q)J—i—i—%%h+b+m)
(2m)°
H* 1
X
16€2 k3k3
x eHGT‘»]Zlefiﬁl»k‘lfiﬁg»k}fﬂzy%g (57)
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m So in Fourier space

(ColR )oK, G0 (K, 1)) = T (2m)8° (Ky+ K2+ Ks )

H* - 1 3 HeS R,
X oo 1} @ (Z Ke (58)

redefinition term is

g(zn)363 (121 +1 + 123)

(Z kik§eH3'Ei> (59)

i#

m The contribution due to second field

(Co(K1, t)Co(Ka, t)Co(Ks, 1)) =

H* £

16¢€2 -
i=1
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m Combining all terms

4

. . . Lo oy HP A
(Colky, t)Co(ka, t)Ca(ks, 1)) = (271)°0° (k1 +ko +k3) 162 H @A (60)
i=1 b

Where

? - - -
5HO"-( kq+k: k-
cosh 2o (Rirkatks)

A 4 2 x el
= €

K

K1 AKp+KpAK3+K1AKs) (

> )

i<j

n—e 3_HeO.&, € 2 HEO.K,
+ (Z Ke ) +3 (Z kik?e ) (61)

i#

m Using translational invariance K1+ Ko + K3 =0 and taking self-adjoint we
get

(oK )oK, 1Co(Ks, = 5 ((Co(Ke, )oKz )G Ks, 1)

1
2
(

+ e(*]zlyt)Ce(*ELt)Ce(*E:s,t»)
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m Finally
HY S 1
- - - B 33 (o oo
(Co(ky, t)Colka, t)Co(ks, t))y = (27)°8 <k1+k2+k3>@£“_§’
4e cos (@)
2,2
e (5 g
i
n—e 3 0.
+ 55 (;ki cosh <H6 k))
+

= (Z kik? cosh (HE)? : Ei)ﬂ
i#j
(62)

[ 121 /\122 = kieijkj and and it goes to standard case (See Maldacena JHEP
0305 (2003) 013 ) for 6 = 0.
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Implications for observations

® The non-gaussianity in CMB is described by angular three-point
correlation functions in harmonic space called as "angular bispectrum”,
which is related to the three-dimensional bispectrum of the primordial
curvature perturbations defined as

— —

(C(Ky, 1) (Kp, 1) C(K3, 1)) = (270)36° (121 +1o+ 123) Bc (k1. ka2, ks)  (63)

m For twisted quantum fields in noncommutative spacetime

s [aecos (BLR
H4 H 1 ecos( > ) (Zkfkf)

16e2 L 1k3 K

B, (R k) =

i<j

+ % (Z kika cosh (HG? . 121))} (64)
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m Bispectrum also breaks statistical isotropy.

m We define fy as

s Bey (Ko Ko Ks)
N 8 PL(k1)P(Ka) + Pe(ka)Pe(ks) + Pe (ki) Pe (k)

f _ 5 ! 4e ©° <@) Z (K2Kk3) + n—e Zk3 cosh <H¥ . 12)
NL - 6 Zi k? K — i 2 - i i
+ % (; kika cosh <H¥ . 121)):|

m This kind of fn arises where the curvature perturbation is expressed as
Cg = Cg + %Cé and fyp peaks at the squeezed triangle limit defined as

[K1] = |Ka| = k and [K3] << k.
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m So the fy1 for noncommutative case is

L = k) [26 cos (El AEZ) 1 (cosh (HG? : 121) + cosh (H@ . 122))]

12 2 2

m The amplitude of fyi is very small and of the order of slow-roll
parameters for small statistical anisotropy.

m fn has scale dependence and direction dependence.

m The current limits on the amplitude of fn for squeezed triangle limit are
fnL = 2.7 £ 5.8 from the recently released Planck data.

m Ongoing and future observations will be able to constraint running of fni,
nng, with a 1 — o uncertainty of Anyng ~0.1.

m It may be possible to see the effects of scale dependence of fy; due to
noncommutativity in future observations.

Akhilesh Nautiyal IMSc



Conclusions

m We have computed two-point and three-point correlation functions for
comoving curvature perturbations in noncommutative spacetime using
ADM formalism.

m Both the power spectrum and the bispectrum for this model are direction
dependent and breaks the statistical isotropy due to the preferred direction
of 6.

m The amplitude of the non-linearity parameter iy is very small for small
statistical anisotropy but it has a high scale dependence which can be
tested in ongoing and future observations.

m We are studying direction dependent power spectrum in the light of
Planck data.

m With the help of these observational signatures of noncommutative
inflation we will, in future, be able to determine the scale of
noncommutativity.
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