Gravitinos, Reheating and the Matter-Antimatter Asymmetry of the Universe

> Raghavan Rangarajan Physical Research Laboratory Ahmedabad

> > with N. Sahu, A. Sarkar, N. Mahajan

OUTLINE

- THE MATTER-ANTIMATTER ASYMMETRY OF THE UNIVERSE
- INFLATION AND REHEATING
- THE GRAVITINO PROBLEM, AND T_{reh}

REHEATING, GRAVITINOS AND THE M-A ASYMMETRY

- A WAY OUT: DETAILED VIEW OF REHEATING
- ANOTHER WAY OUT: DELAYED THERMALISATION
- GRAVITINO PROBLEM AGAIN

CONCLUSION

PREAMBLE

A BRIEF HISTORY OF OUR UNIVERSE

OBSERVATIONS + GENERAL THEORY OF RELATIVITY

14 b yr, COMPOSITION, EXPANDING, PAST – HOT AND DENSE

A BRIEF HISTORY OF OUR UNVIERSE

- First second hot primordial plasma of electrons, . photons, quarks/protons, neutrons, dark matter, ...
- 1 s 3 min light nuclei (helium, lithium, ..)
- 400,000 years Atoms form, CMBR
- 300 million years First stars form
- 1 billion years First galaxies form
- 9 billion years Solar system formed
- 14 billion years Today

THE FIRST SECOND

• 10^{-44} s – Planck time (E ~ 10^{19} GeV) [Q Gravity]

Grand Unified Theory

 10⁻³⁸ s – GUT Phase Transition (E ~ 10¹⁶ GeV, T ~ 10²⁹ K)

Standard Model [q, I, H, GB] /Modified SM

- 10⁻¹¹ s Electroweak Phase Transition (E ~ 100 GeV, T ~ 10¹⁵ K)
- $10^{-6} \text{ s} \text{quarks} \rightarrow \text{protons}$, neutrons (E ~ 1 GeV, T ~ 10^{13} K)
- 1 s Primordial Nucleosynthesis begins (E~ 1 MeV, T~ 10¹⁰ K)

OUTLINE

- THE MATTER-ANTIMATTER ASYMMETRY OF THE UNIVERSE
- INFLATION AND REHEATING
- THE GRAVITINO PROBLEM, AND T_{reh}

REHEATING, GRAVITINOS AND THE M-A ASYMMETRY

- A WAY OUT: DETAILED VIEW OF REHEATING
- ANOTHER WAY OUT: DELAYED THERMALISATION
- GRAVITINO PROBLEM AGAIN

CONCLUSION

MATTER-ANTIMATTER ASYMMETRY OF THE UNIVERSE

- SOLAR SYSTEM PROBES, INTERACTION OF SOLAR WIND WITH PLANETS
- MILKY WAY COSMIC RAYS
- CLUSTER (20 Mpc) GALACTIC COLLISIONS (1 Mpc = 3 x 10⁶ lt-yr) INTERGALACTIC HOT PLASMA
- UP TO 1000 Mpc COSMIC DIFFUSE GAMMA RAY SPECTRUM
 (ANNIHILATIONS AT BOUNDARY FROM z=1000 TO 20 – 380,000 YR TO 100 MILLION YR)
 (Cohen, de Rujula, Glashow) 7

MATTER-ANTIMATTER ASYMMETRY OF THE UNIVERSE

- ANTIMATTER RULED OUT TILL d~1000 Mpc
- SIZE OF OBSERVABLE UNIVERSE ~ 14000 Mpc

 $(1 \text{ Mpc} = 3 \times 10^{19} \text{ km} = 3 \times 10^{6} \text{ It-yr})$

MATTER-ANTIMATTER ASYMMETRY OF THE UNIV

- EARLY TIMES (t << 1 s = PRIM. NUCL.) EQUAL AMOUNTS OF MATTER AND ANTIMATTER
- WHERE DID THE ANTIMATTER GO? WHY THIS ASYMMETRY TODAY?
- DISEQUILIBRIUM IN THE EARLY UNIVERSE 100 M + 100 $A \rightarrow$ 103 M + 101 $A \rightarrow$ 2 M

 $X \to M$ $X \to A$

 $\rm r_M > \rm r_A$, GET MORE MATTER THAN ANTIMATTER

- X = GUT (GRAND UNIFIED THEORY) BOSONS – GUT BARYOGENESIS MASS ($M_x \sim 10^{16}$ GeV)
- X = HEAVY NEUTRINOS - LEPTOGENESIS MODELS MASS ($M_N \sim 10^{10}$ GeV)

MASS EXPRESSED AS MASS ENERGY M $\rm c^2$

1 GeV = PROTON MASS

BEYOND STANDARD MODEL PARTICLES

WHEREFROM

- GUT BOSONS ($M_X \sim 10^{16} \text{ GeV}$)
- HEAVY NEUTRINOS ($M_N \sim 10^{10} \text{ GeV}$) ?

1 GeV = PROTON MASS

WHEREFROM

- GUT BOSONS ($M_X \sim 10^{16} \text{ GeV}$)
- HEAVY NEUTRINOS $(M_N \sim 10^{10} \text{ GeV})$?

1 GeV = PROTON MASS

In the hot early Universe when temperatures were very high $(k_B T > M)$ $(k_B = 1)$

OUTLINE

- THE MATTER-ANTIMATTER ASYMMETRY OF THE UNIVERSE
- INFLATION AND REHEATING
- THE GRAVITINO PROBLEM, AND T_{reh}

REHEATING, GRAVITINOS AND THE M-A ASYMMETRY

- A WAY OUT: DETAILED VIEW OF REHEATING
- ANOTHER WAY OUT: DELAYED THERMALISATION
- GRAVITINO PROBLEM AGAIN

CONCLUSION

INFLATION and **REHEATING**

INFLATION – PERIOD OF ACCELERATED EXPANSION IN THE EARLY UNIVERSE (t ~ 10^{-38} s or later)

ASSOCIATED WITH THE DYNAMICS OF A SLOWLY VARYING FIELD CALLED THE INFLATON Φ

ENERGY DENSITY DOMINATES, DETERMINES EVOL OF UNIV

DURING INFLATION, $R \sim exp(H t)$ [R IS THE SCALE FACTOR,

In expanding Univ d ~ d₁ R(t)]

n OF ALL SPECIES $\rightarrow 0$

INFLATON DECAY PRODUCTS THERMALISE, T_{reh} THERMAL BATH HAS q, I, H, dm, BSM INCLUDING GUT PARTICLES AND HEAVY NEUTRINOS REHEATING

OUTLINE

- THE MATTER-ANTIMATTER ASYMMETRY OF THE UNIVERSE
- INFLATION AND REHEATING
- THE GRAVITINO PROBLEM, AND T_{reh}

REHEATING, GRAVITINOS AND THE M-A ASYMMETRY

- A WAY OUT: DETAILED VIEW OF REHEATING
- ANOTHER WAY OUT: DELAYED THERMALISATION
- GRAVITINO PROBLEM AGAIN

CONCLUSION

GRAVITINOS

 $\tilde{G} =$ SUPERSYMMETRIC PARTNER OF THE GRAVITON

SUPERSYMMETRY

- EXTENSION OF THE STANDARD MODEL (GAUGE HIERARCHY)
- SUPERPARTNERS: FERMION BOSON

PHOTON – PHOTINO, ELECTRON – SELECTRON (EQUAL m, IF SUSY)

LOCAL (spacetime dep) SUPERSYMMETRY: SUPERGRAVITY GRAVITON – GRAVITINO (\tilde{G})

BROKEN $(m_{\tilde{G}} : eV - TeV)$ 17

GRAVITINOS

 $\tilde{G} =$ SUPERSYMMETRIC PARTNER OF THE GRAVITON

PRODUCED AFTER INFLATION $t \sim 10^{-38} \,\mathrm{s} \,(m_{\tilde{G}} : \mathrm{eV} - \mathrm{TeV})$

COSMOLOGICAL CONSEQUENCES (m, n)

- STABLE : AFFECTS EXPANSION RATE, $\rho_{\tilde{G}} > \rho_c$ (L/H)
- UNSTABLE : AFFECT EXPANSION RATE PRIOR TO DECAY

DECAY PRODUCTS $\rho > \rho_c$

DESTROY LIGHT ELEMENTS ${}^{4}He$, ${}^{3}He$, D (NUCLEOSYNTHESIS)

GRAVITINO PROBLEM(S)

GRAVITINOS

 $\tilde{G} =$ SUPERSYMMETRIC PARTNER OF THE GRAVITON

PRODUCED AFTER INFLATION $t \sim 10^{-34} \,\mathrm{s} \,(m_{\tilde{G}} : \mathrm{eV} - \mathrm{TeV})$

COSMOLOGICAL CONSEQUENCES (m, n)

- STABLE : AFFECTS EXPANSION RATE, $\rho_{\tilde{G}} > \rho_c$ (L/H)
- UNSTABLE : AFFECT EXPANSION RATE PRIOR TO DECAY

DECAY PRODUCTS $\rho > \rho_c$

DESTROY LIGHT ELEMENTS ${}^{4}He$, ${}^{3}He$, D (NUCLEOSYNTHESIS)

GRAVITINO PROBLEM(S) => UPPER BOUND ON $ho_{ ilde{G}} \propto n_{ ilde{G}}$

STANDARD PICTURE OF GRAVITINO PRODUCTION

INFLATION \rightarrow REHEATING (OSC. + DECAY) (T_{reh})

→ RADIATION DOMINATED UNIV (Relativistic particles)

THERMAL SCATTERING $\rightarrow G$ (gluons, quarks, squarks, gluinos) ²⁰

STANDARD CALC OF GRAVITINO PRODUCTION

CALCULATE GRAVITINO PRODUCTION IN THE RAD DOM ERA

MAINLY PRODUCED AT THE BEGINNING OF THE RAD DOM ERA WHEN $~T\sim T_{\rm reh}$, and $~n_{\tilde{G}}\propto T_{\rm reh}.$

UPPER BOUND ON $n_{\tilde{G}}$

 \Rightarrow UPPER BOUND ON T_{reb} OF 10^{6—9} GeV (MASS 100 GeV – 10 TeV)

 $k_{\rm B}$ T in GeV $k_{\rm B}$ =1 1 GeV =10¹³ K

 THE UPPER BOUND ON THE REHEAT TEMPERATURE 10⁶⁻⁹ GeV TO SUPPRESS GRAVITINO PRODUCTION

1 GeV =10¹³ K

- THE UPPER BOUND ON THE REHEAT TEMPERATURE 10⁶⁻⁹ GeV TO SUPPRESS GRAVITINO PRODUCTION
- MATTER-ANTIMATTER ASYMMETRY GENESIS MODELS REQUIRE HEAVY X, MASS 10¹⁰, 10¹⁶ GeV

1 GeV = PROTON MASS

- THE UPPER BOUND ON THE REHEAT TEMPERATURE 10⁶⁻⁹ GeV TO SUPPRESS GRAVITINO PRODUCTION
- MATTER-ANTIMATTER ASYMMETRY GENESIS MODELS REQUIRE HEAVY X, MASS 10¹⁰, 10¹⁶ GeV

DIFFICULT TO HAVE ENOUGH HEAVY X IN THE RADIATION DOMINATED UNIV AFTER REHEATING

$$n_X \sim exp(-m c^2/k_BT)$$

- THE UPPER BOUND ON THE REHEAT TEMPERATURE 10⁶⁻⁹ GeV TO SUPPRESS GRAVITINO PRODUCTION
- MATTER-ANTIMATTER ASYMMETRY GENESIS MODELS REQUIRE HEAVY X, MASS 10¹⁰, 10¹⁶ GeV

DIFFICULT TO HAVE ENOUGH HEAVY X IN THE RADIATION DOMINATED UNIV AFTER REHEATING

LOW REHEAT TEMPERATURE IS A PROBLEM FOR GUT BARYOGENESIS AND LEPTOGENESIS ²⁶

OUTLINE

- THE MATTER-ANTIMATTER ASYMMETRY OF THE UNIVERSE
- INFLATION AND REHEATING
- THE GRAVITINO PROBLEM, AND T_{reh}

REHEATING, GRAVITINOS AND THE M-A ASYMMETRY

- A WAY OUT: DETAILED VIEW OF REHEATING
- ANOTHER WAY OUT: DELAYED THERMALISATION
- GRAVITINO PROBLEM AGAIN

CONCLUSION

WE FOCUS ON LEPTOGENESIS MODELS – OUT OF EQM DECAY OF *N*.

POPULAR – RELATED TO LIGHT NEUTRINO MASSES

MASS $M_N \sim 10^{10} \text{ GeV}$

TWO SPECIES NEUTRINOS AND GRAVITINOS BOTH CREATED IN THE SAME THERMAL ENVIRONMENT -- RADIATION DOMINATED UNIVERSE AFTER REHEATING WANT N (M-A ASYMMETRY) BUT NOT \tilde{G} (DECAY)

SOLUTIONS

INCREASE N

DETAILED VIEW OF REHEATING

DECREASE \tilde{G}

DELAYED THERMALISATION DURING REHEATING DUE TO SUSY FLAT DIRECTIONS

SOLUTIONS

INCREASE N

DETAILED VIEW OF REHEATING

DECREASE \tilde{G}

DELAYED THERMALISATION DURING REHEATING DUE TO SUSY FLAT DIRECTIONS

NEW GRAVITINO PROBLEM

INCREASE \tilde{G} DUE TO SUSY FLAT DIRECTIONS 31

SOLUTION 1

INCREASE N

DETAILED VIEW OF REHEATING

NEUTRINO PRODUCTION DURING REHEATING

STANDARD CALC OF PRODUCTION ASSUMES INSTANTANEOUS INFLATON DECAY AND REHEATING.

 $T \to T_{max} \to T_{reh}$

 $T_{\rm reh}$ is the final temperature at the end of Reheating

 $T_{\rm max}\,$ CAN BE AS HIGH AS $\,$ 1000 $\,T_{\rm reh}\,$. CAN BE USED TO CREATE ENOUGH NEUTRINOS

CHUNG ET AL, DELEPINE AND SARKAR, GIUDICE ET AL

GRAVITINO PRODUCTION DURING REHEATING

STANDARD CALC OF PRODUCTION ASSUMES INSTANTANEOUS INFLATON DECAY AND REHEATING.

$T \to T_{max} \to T_{reh}$

 $T_{\rm reh}$ is the final temperature at the end of Reheating

 $T_{\rm max}\,$ CAN BE AS HIGH AS $\,$ 1000 $\,T_{reh}\,$. CAN BE USED TO CREATE ENOUGH NEUTRINOS

IF A LARGE T_{max} CAN ENHANCE NEUTRINO PRODUCTION, CAN IT ALSO ENHANCE GRAVITINO PRODUCTION ?

GRAVITINO PRODUCTION DURING REHEATING

SOLVED THE INTEGRATED BOLTZMANN EQUATION FOR GRAVITINO PRODUCTION DURING REHEATING

$$\frac{dn_{\tilde{G}}}{dt} = -3Hn_{\tilde{G}} + \langle \Sigma_{\text{tot}} | v | \rangle n^2$$

e.g. $q + \bar{\tilde{q}} \to g + \tilde{G}$ $q + \bar{q} \to \tilde{g} + \tilde{G}$ $\tilde{q} + \bar{\tilde{q}} \to \tilde{g} + \tilde{G}$

 $q - \tilde{q}, g - \tilde{g}$ Superpartners

RESULTS

SOLVED THE INTEGRATED BOLTZMANN EQUATION FOR GRAVITINO PRODUCTION DURING REHEATING

$$\frac{dn_{\tilde{G}}}{dt} = -3Hn_{\tilde{G}} + \langle \Sigma_{\rm tot} | v | \rangle n^2$$

e.g.
$$q + \bar{\tilde{q}} \to g + \tilde{G} \qquad q + \bar{q} \to \tilde{g} + \tilde{G} \qquad \tilde{q} + \bar{\tilde{q}} \to \tilde{g} + \tilde{G}$$

DEPENDENCE ON T_{max} CANCELS OUT [UNEXPECTED]

ABUNDANCE GENERATED IS LARGE, BUT LESS THAN THE COSMOLOGICAL BOUND ON THE GRAVITINO ABUNDANCE

SOLUTION IS VIABLE

RR, SAHU

OUTLINE

- THE MATTER-ANTIMATTER ASYMMETRY OF THE UNIVERSE
- INFLATION AND REHEATING
- THE GRAVITINO PROBLEM, AND T_{reh}

REHEATING, GRAVITINOS AND THE M-A ASYMMETRY

- A WAY OUT: DETAILED VIEW OF REHEATING
- ANOTHER WAY OUT: DELAYED THERMALISATION
- GRAVITINO PROBLEM AGAIN

CONCLUSION

NEW SCENARIO OF GRAVITINO PRODUCTION

IN THE PRESENCE OF SUSY FLAT DIRECTIONS

IN SOME CASES, SUPPRESS PRODUCTION

IN OTHER CASES, EXCESSIVE PRODUCTION

SUSY FLAT DIRECTIONS

STANDARD MODEL , H SCALAR (SPIN 0) MINIMISE V, $\langle H \rangle \neq 0 \Rightarrow q$, I, W, Z GET MASS HIGGS MECHANISM

SCALAR POTENTIAL V IN SUSY IS A FUNCTION OF $(H_u, H_d, \tilde{q}_i, \tilde{l}_i)$

DIRECTIONS IN FIELD SPACE OF SCALARS ALONG WHICH THE SCALAR POTENTIAL IS MINIMISED

V' = 0, POTENTIAL IS FLAT — FLAT DIRECTIONS

[POTENTIAL IS CONSTANT AND ZERO ALONG FLAT DIRECTION]

Any point on this line minimises the potential – parametrised by ψ . Note that each point corresponds to a different vacuum

SUSY FLAT DIRECTIONS

FLAT DIRECTION CORRESPONDING TO

$$\widetilde{q}$$
 = ψ , \widetilde{l} = ψ phases

REPRESENTED BY A COMPLEX SCALAR FIELD $\,\psi\,$ (AFFLECK-DINE FIELD)

FLAT DIRECTION \rightarrow QUADRATIC POT WITH CURV m₀

 $\psi_0 \neq 0~$ due to quantum fluctuations during inflation; other reasons

WHEN t_U~ t_F (or H ~ m₀), ψ oscillates, $\psi \sim 1/R^{3/2}$ Then it decays (before ewsb t~10⁻¹¹ s)

SOLUTION 2

DECREASE \tilde{G}

DELAYED THERMALISATION DURING REHEATING DUE TO SUSY FLAT DIRECTIONS

COSMOLOGICAL CONSEQUENCES

- NON-ZERO VALUE OF ψ GIVES MASS TO GAUGE BOSONS (BREAKS GAUGE SYMMETRY),
- e.g., $L \supset \tilde{q}^* \tilde{q} A A$

FLAT DIRECTION EXPECTATION VALUE CAN BE 10¹³ GEV OR HIGHER

THERMALISATION DUE TO PROCESSES MEDIATED BY GAUGE BOSONS – PHOTONS (EM), GLUONS (STRONG)

COSMOLOGICAL CONSEQUENCES

NON-ZERO VALUE OF ψ GIVES MASS TO GAUGE BOSONS (BREAKS GAUGE SYMMETRY),

e.g., $L \supset \tilde{q}^* \tilde{q} A A$

IF ALL GAUGE BOSONS GET MASS [LLddd, QuQue], IT SLOWS DOWN THERMALISATION AFTER INFLATION, LEADING TO A DILUTE PLASMA.

SUPPRESSES GRAVITINO PRODUCTION

ALLAHVERDI AND MAZUMDAR; RR AND A. SARKAR

COSMOLOGICAL CONSEQUENCES

STANDARD PICTURE OF REHEATING: INFLATON DECAYS $\rightarrow n_0 \rightarrow$ THERMALISE KINETIC EQM n_0 CHEMICAL EQM n_1 [10⁴]

FLAT DIRECTIONS: INFLATON DECAYS $\rightarrow n_0 \rightarrow$ delayed thermalisation $n \sim n_0 \ll n_1$

DILUTE PLASMA

GRAVITINOS PRODUCED BY SCATTERING OF INFLATON DECAY PRODUCTS [n.n]

$$n_{\tilde{G}} \downarrow \downarrow$$
 46

EARLIER INFLATON DECAYS AND DECAY PRODUCTS THERMALISE QUICKLY

$$q + \bar{\tilde{q}} \to g + \tilde{G} \qquad q + \bar{q} \to \tilde{g} + \tilde{G} \qquad \tilde{q} + \bar{\tilde{q}} \to \tilde{g} + \tilde{G}$$

$$\dot{n}_{\tilde{G}} = -3Hn_{\tilde{G}} + \langle \Sigma_{\text{tot}} | v | \rangle n^2 \qquad n \sim T^3$$

NOW,
$$\dot{n}_{\tilde{G}} = -3Hn_{\tilde{G}} + \int d\Pi_1 \ d\Pi_2 \ f_1 \ f_2 \ W_{12}(s)$$

 $W_{12}(s) \propto \sigma_{CM}$

$f_{1,2}$ particle distribution functions for incoming particles

RESULTS

APPROPRIATE $f_{1,2}$

SUPPRESSED GRAVITINO PRODUCTION DUE TO

A) DILUTE PLASMAB) PHASE SPACE SUPPRESSION

$$q + \bar{\tilde{q}} o g + \tilde{G} \qquad q + \bar{q} o \tilde{g} + \tilde{G} \qquad \tilde{q} + \bar{\tilde{q}} o \tilde{g} + \tilde{G}$$

OUTGOING GLUON/GLUINO HEAVY GRAVITINO PRODUCTION SHUTS OFF WHEN THE ENERGY OF INCOMING QUARKS/SQUARKS < $m_{g,\tilde{g}}_{_{48}}$

RESULTS

SUPPRESSED GRAVITINO PRODUCTION

$$Y_{\tilde{G}} = 4 \times 10^{-18}, 10^{-20} < 10^{-14}$$

COMPLETE SHUT OFF

[RR, A. SARKAR]

N↓ BUT SUFFICIENT

GRAVITINO PRODUCTION

• DETAILED VIEW OF REHEATING N^ \uparrow BUT \tilde{G} \uparrow

• DELAYED THERMALISATION IN THE PRESENCE OF SUSY FLAT DIRECTIONS N \downarrow BUT $\tilde{G} \downarrow \downarrow$

ALTERNATE SCENARIO WITH SUSY FLAT DIRECTIONS

GRAVITINO OVER-PRODUCTION

ALTERNATE SCENARIO

- IF FLAT DIRECTION EV DOES NOT BREAK ALL GAUGE SYMMETRIES, THERMALISATION WILL OCCUR
- CONSIDER A SCENARIO WITH $H_u H_d$ FLAT DIRECTION. SU(3)_C x SU(2)_L x U(1)_Y \rightarrow SU(3)_C x U(1)_{EM}
- GLUON AND GLUINO LIGHT (m ~ gT, REL), THERMAL DISTRIBUTION
- QUARK AND SQUARK HEAVY (NR), $m \approx h\psi$, ψ > 10¹³ GeV $m_{\tilde{a}}^2 - m_a^2 = m_S^2$ $m_S^2 \sim T^2 \ll m_{a,\tilde{a}}^2$ 52

- BREIT-WIGNER RESONANCE WHEN Incoming energy = E_{gluino} + E_q ≈ m_{sq}
- CROSS SECTION ~ 1 ($s-m_{sq}^2$)² + $m_{sq}^2 \Gamma^2$

 $s^{1/2}$ = E_{gluino} + $E_{q}\,$, $\,\Gamma$ = squark decay rate

GRAVITINO PROBLEM AGAIN!

- GRAVITINO ABUNDANCE GENERATED IS VERY
 LARGE AND GREATER THAN THE COSMOLOGICAL
 UPPER BOUND FOR MOST PARAMETER SPACE
- COSMOLOGICAL UPPER BOUND IS Y < 10⁻¹⁴
- FOR DIFFERENT SETS OF PARAMETERS

 $Y = 10^{-8} - 10^{-2}$

GRAVITINO PROBLEM AGAIN!

- LARGE VALUES FOR SUSY FLAT DIRECTIONS IS GENERIC. EXACERBATED GRAVITINO PROBLEM
- HAVE TO INVOKE EARLY DECAY OF FLAT
 DIRECTIONS TO AVOID CONFLICT

[MAHAJAN, RR, A. SARKAR]

CONCLUSION

- 1. POPULAR MODELS OF GENERATING THE MATTER-ANTIMATTER ASYMMETRY OF THE UNIVERSE REQUIRE A LARGE REHEAT TEMPERATURE AFTER INFLATION
- 2. BUT THAT GENERATES TOO MANY GRAVITINOS IN THE UNIVERSE
- 3. COSMOLOGISTS ARE LOOKING FOR MECHANISMS TO ENHANCE NEUTRINO ABUNDANCE/SUPPRESS GRAVITINO ABUNDANCE

CONCLUSION

- NEUTRINOS GENERATED DURING REHEATING ~ GRAVITINO ABUNDANCE GENERATED NOT TOO LARGE
- 5. GRAVITINO ABUNDANCE GENERATED IN A NON-THERMAL UNIVERSE IN THE PRESENCE OF FLAT DIRECTIONS IS SUPPRESSED
- GRAVITINO ABUNDANCE IN A THERMAL UNIVERSE WITH FLAT DIRECTIONS CAN BE LARGE – NEW SOURCE OF THE GRAVITINO PROBLEM

(DETAILS OF THE SUSY MODEL) 57

ADJUST THE REHEAT TEMP?

- GRAVITINO ABUNDANCE DECREASES BY INCREASING $\mathsf{T}_{\mathsf{REH}}$
- STANDARD PRODUCTION GRAVITINO ABUNDANCE INCREASES WITH T_{REH}