Primordial magnetic fields: Cosmological implications

based on Sethi and Subramanian, JCAP, 2009 Sethi, Haiman, and Pandey, ApJ, 2010 Pandey and Sethi, ApJ, 2011 Pandey and Sethi, ApJ, 2012

March 12, 2013

Post-recombination
The
Primordial magnetic
Ionization History
Global HI signal
Fluctuating
HI signal: ΛCDM
Fluctuating
Detectability of the signal
Magnetic fields and
Thermal evolution:
Ionization evolution
Formation of
Formation of first SMBHs
Weak Gravitational
Power Spectrum
Cosmological weak
Cosmological weak
Constraints on
Conclusions
Title Page

Page 1 of 29

Go Back

1. Primordial magnetic fields: Motivation

- Scalar and tensor perturbation were generated at the time of inflation. Is it not conceivable that a process existed then (breaking of conformal invariance?) that led to the generation of magnetic fields? (Turner and Widrow 1988, Ratra 1992)
- Magnetic field coherent at scales $\gtrsim 10 \,\mathrm{kpc}$ exist in galaxies and clusters of galaxies. Can they be explained using amplification of a small seed magnetic field $\lesssim 10^{-20} \,\mathrm{G}$ using dynamo mechanism? Not clear. Evidence of μG magnetic field at $z \simeq 2$ and synchrotron emission at super-cluster scales favour primordial field hypothesis.
- Magnetic fields of strength $\simeq 10^{-9}$ G interesting from the point of view of observed fields in galaxies, clusters of galaxies and cosmology.

i initeratur inagricule i i i
Ionization History
Global HI signal
Fluctuating
HI signal: ACDM
Fluctuating
Detectability of the signal
Magnetic fields and
Thermal evolution:
Ionization evolution
Formation of
Formation of first SMBHs
Weak Gravitational
Power Spectrum
Cosmological weak
Cosmological weak
Constraints on
Conclusions
Title Page

2. Direct probe of magnetic field at large scales

- Detection of synchrotron radiation from structures larger than clusters (e.g Kim et al. 1989). Difficult as the gas density falls and diffuse low-surface brightness emission is difficult to image with radio interferometers.
- Correlation of Faraday rotation of high redshift radio sources: Such correlation can reveal the presence of magnetic field coherent on very large scales (> 100 Mpc) (e.g. Kollat 1998, Sethi 2003). Not possible so far owing to lack of homogeneous samples of Faraday rotation measurement. Upcoming interferometers such as LOFAR will create such a sample with 10^5 sources. This is one of the primary goals of SKA, which will be able to reliably observe 10^7 Faraday rotations.

Ionization History
Global HI signal
Fluctuating
HI signal: ACDM
Fluctuating
Detectability of the signal
Magnetic fields and
Thermal evolution:
Ionization evolution
Formation of
Formation of first SMBHs
Weak Gravitational
Power Spectrum
Cosmological weak
Cosmological weak
Constraints on
Conclusions
Title Page

3. Tangled Magnetic fields

• Statistically homogeneous and isotropic tangled magnetic fields:

$$\langle \tilde{B}_i(\mathbf{q})\tilde{B}_j^*(\mathbf{k})\rangle = \delta_D^3(\mathbf{q}-\mathbf{k})\left(\delta_{ij}-k_ik_j/k^2\right)M(k)$$
 (1)

• The magnetic fields are further assumed to be Gaussian and therefore their statistical properties are completely described by power spectrum: M(k) with

$$M(k) = Ak^n \tag{2}$$

with the spectral index of power spectrum $n \gtrsim -3$.

- Time evolution: In an expanding universe: $Ba^2 = \text{const}$, flux-frozen: $B\rho^{-2/3} = \text{const}$
- Normalization: Normalized to the present, B_0 refers to RMS using the cut-off scale $k_c = 1 \text{ Mpc}^{-1}$.

- 4. Early structure formation with tangled magnetic fields
 - Magnetic fields generate density perturbations in the post-recombination era (Wasserman 1978).
 - For nearly scale-invariant power spectrum of magnetic fields, the matter power spectrum $P(k) \propto k$. At scales corresponding to $k \lesssim 1 \,\mathrm{Mpc}^{-1}$ this could dominate over the inflation-era produced density perturbations.
 - Important scales: Comoving

$$k_{\rm max} \simeq 235 \,{\rm Mpc}^{-1} \left(\frac{10^{-9} \,{\rm G}}{B_0}\right)$$

 $k_{\rm J} \simeq 15 \,{\rm Mpc}^{-1} \left(\frac{10^{-9} \,{\rm G}}{B_0}\right)$ (3)

 $k_{\rm J}$ is independent of time.

• Magnetic fields can aid early structure formation. How early and at what scales?

•• >>
Title Page
Conclusions
Constraints on
Cosmological weak
Cosmological weak
Power Spectrum
Weak Gravitational
Formation of first SMBHs
Formation of
Ionization evolution
Thermal evolution:
Magnetic fields and
Detectability of the signal
Fluctuating
HI signal: ACDM
Fluctuating
Global HI signal
Ionization History

5. Matter power spectrum

Ionization History Global HI signal Fluctuating . . . HI signal: ACDM Fluctuating . . . Detectability of the signal Magnetic fields and . . . Thermal evolution: . . . Ionization evolution Formation of ... Formation of first SMBHs Weak Gravitational . . . Power Spectrum . . . Cosmological weak . . . Cosmological weak . . . Constraints on . . . Conclusions Title Page ••

44

6. Post-recombination effects of magnetic fields

- Early structure formation: The redshift of collapse depends strongly on the spectral index of magnetic field power spectrum. All models other than nearly scales invariant $n \simeq -3$ are ruled out by these considerations. The collapse redshift is not sensitive to the value of the magnetic field.
- Dissipation of magnetic fields: Tangled magnetic fields can dissipate by ambi-polar diffusion and decaying turbulence in the post-recombination era. This can lead to an altered ionization and thermal history (Sethi and Subramanian 2005).
- Molecular Hydrogen formation: Can be significantly altered in the IGM and in the collapsing haloes (Sethi, Nath, and Subramanian 2008, Schicheler et al. 2009, Sethi, Haiman, Pandey 2010)

i interatar magnetie
Ionization History
Global HI signal
Fluctuating
HI signal: ACDM
Fluctuating
Detectability of the signal
Magnetic fields and
Thermal evolution:
Ionization evolution
Formation of
Formation of first SMBHs
Weak Gravitational
Power Spectrum
Cosmological weak
Cosmological weak
Constraints on
Conclusions
Title Page
44 >>

7. The post-Recombination Era

Ionization History

Global HI signal

	Ionization History
eionization:	Global HI signal
	Fluctuating
mine the mass	HI signal: ACDM
$1-\sigma$ in this case as	Fluctuating
	Detectability of the signal
ing factor to solve	Magnetic fields and
ang factor, to solve	Thermal evolution:
an sphere around	Ionization evolution
	Formation of
raction.	Formation of first SMBHs
	Weak Gravitational
ase $f_{\alpha}f \sim 0.01$	Power Spectrum
orders of magnitude	Cosmological weak
	Cosmological weak
	Constraints on
	Conclusions
	The Fage

- 8. Primordial magnetic fields and reionization: semi-analytic models
 - Press-Schechter formalism to determine the mass function. Most haloes are close to $1-\sigma$ in this case as opposed to the usual case.
 - Choose halo UV luminosity, clumping factor, to solve for the radius of evolving Stromgren sphere around each source.
 - Compute the evolution of ionized fraction
 - Normalize to WMAP results.
 - magnetic field v/s the usual case: $f_{\rm eff} f_{\rm esc} \simeq 0.01$ in the usual case. It could be two orders of magnitude smaller for $B_0 \simeq 3 \times 10^{-9}$ G.

9. **Ionization History**

Ionization History

10. Global HI signal

Ionization History
Global HI signal
Fluctuating
HI signal: ACDM
Fluctuating
Detectability of the signal
Magnetic fields and
Thermal evolution:
Ionization evolution
Formation of
Formation of first SMBHs
Weak Gravitational
Power Spectrum
Cosmological weak
Cosmological weak
Constraints on
Conclusions
Title Page

11. Fluctuating component of HI signal

• Two point correlation function:

$$C(r_{12},\theta) = T_0^2 \left(\xi_{xx} \xi_{\delta\delta}(r_{12},\theta,z) + \xi_{xx} - \bar{x}_{\rm H}^2 \right)$$
(4)

 T_0 is the global HI signal. $\xi_{\delta\delta}(r_{12}, \theta, z)$ is the HI density correlation function, which is the same as density correlation function (Bias b = 1 assumed throughout).

- $\xi_{xx} = \langle x_{\rm H}(\mathbf{r_1}) x_{\rm H}(\mathbf{r_2}) \rangle$ is computed by assuming the HII regions to be non-overlapping spheres of different sizes.
- Distribution of bubble sizes: (a) the centers of bubbles are uncorrelated and (b) the centers of bubbles are correlated according to the large scale density field.

Ionization History
Global HI signal
Fluctuating
HI signal: ACDM
Fluctuating
Detectability of the signal
Magnetic fields and
Thermal evolution:
Ionization evolution
Formation of
Formation of first SMBHs
Weak Gravitational
Power Spectrum
Cosmological weak
Cosmological weak
Constraints on
Conclusions
Title Page
•• ••

12. HI signal: Λ CDM

(Mellema et al 2006)

· · · · · · · · · · · · · · · · · · ·
Ionization History
Global HI signal
Fluctuating
HI signal: ACDM
Fluctuating
Detectability of the signal
Magnetic fields and
Thermal evolution:
Ionization evolution
Formation of
Formation of first SMBHs
Weak Gravitational
Power Spectrum
Cosmological weak
Cosmological weak
Constraints on
Conclusions
Title Page

13. Fluctuating component of HI signal

Ionization History
Global HI signal
Fluctuating
HI signal: ACDM
Fluctuating
Detectability of the signal
Magnetic fields and
Thermal evolution:
Ionization evolution
Formation of
Formation of first SMBHs
Weak Gravitational
Power Spectrum
Cosmological weak
Cosmological weak
Constraints on
Conclusions
Title Page

14. Detectability of the signal

- Upcoming radio interferometers, MWA, LOFAR, have angular resolution $\simeq 2-4'$ (4–8 Mpc). It is too coarse to detect the primordial *B* induced HI signal.
- Indirect detection: If magnetic fields played an important role in ionizing the universe, then at the scales probed by MWA, LOFAR, only HI density perturbation will be observed. It would indicate a source of reionization more homogeneous than predicted by ΛCDM model.
- Future radio interferometer has the sensitivity and the resolution to detect this signal. (SKA might also directly detect primordial fields by Faraday rotation studies of 10⁷ radio sources).

i initeration and integrice i i i
Ionization History
Global HI signal
Fluctuating
HI signal: ACDM
Fluctuating
Detectability of the signal
Magnetic fields and
Thermal evolution:
Ionization evolution
Formation of
Formation of first SMBHs
Weak Gravitational
Power Spectrum
Cosmological weak
Cosmological weak
Constraints on
Conclusions
Title Page
44

- 15. Magnetic fields and molecular Hydrogen formation
 - The H^- channel dominates the H_2 formation:

 $H + e = H^{-} + \gamma$ $H^{-} + H = H_{2} + e$

- Important destruction mechanisms:
 - $H^{-} + H = 2H + e$ (6) $H_{2} + e = 2H + e$ (7) $H_{2} + e = H + H^{-}$ (8) $H_{2} + H = 3H$ (9)

Destruction rates increase with temperature; rate (8) also depends on density and increases with density.

U
Ionization History
Global HI signal
Fluctuating
HI signal: ACDM
Fluctuating
Detectability of the signal
Magnetic fields and
Thermal evolution:
Ionization evolution
Formation of
Formation of first SMBHs
Weak Gravitational
Power Spectrum
Cosmological weak
Cosmological weak
Constraints on
Conclusions
Title Page

(5)

16. Thermal evolution: collapsing halo

17. Formation of molecular hydrogen: collapsing halo

18. Formation of first SMBHs

- Presence of quasars at $z \simeq 6$ indicates SMBHs of $\geq 10^9 \,\mathrm{M}_{\odot}$ at $t \leq 1$ billion yrs.
- Simulations suggest masses of first stars $\simeq 100 \, M_{\odot}$, or the first black holes would be of similar masses. Accretion times scales to form $10^9 \, M_{\odot}$ black holes comparable to the age of the universe. Cooling to $300 \, \text{K}$ also results in low accretion rates.
- Preventing cooling of collapsing halo to $n \simeq 10^3 \,\mathrm{cm}^{-3}$ might results in a black holes of mass \geq a few $\times 10^4 \,\mathrm{M}_{\odot}$ (Shang et al. 2010).
- Magnetic fields provide one such mechanism.

•• ••
Title Page
Conclusions
Constraints on
Cosmological weak
Cosmological weak
Power Spectrum
Weak Gravitational
Formation of first SMBHs
Formation of
Ionization evolution
Thermal evolution:
Magnetic fields and
Detectability of the signal
Eluctuating
HI signal: ACDM
Fluctuating
Global HI signal
Ionization History

19. Weak Gravitational lensing and cosmology

- Unbiased probe of all matter (dark plus luminous); is a 'linear' probe of 'non-linear' structures.
- Power spectrum of convergence:

$$P_{\kappa}(\ell) \propto \int dz \left(\frac{g(z)}{a(z)}\right)^2 P_{\delta}(\ell/r(z), z)$$
 (10)

g(r): redshift distribution of sources. $P_{\delta}(\ell/r)$: matter power spectrum at $k = \ell/r$.

- More complications: redshift distribution of sources, field of view (CFHTLS wide, 57 square degrees), point spread function (future space based survey SNAP)
- Present data: CFHTLS wide. Shear statistics from 1 arcmin to 4 degress.

20. Power Spectrum estimation: present status

U
Ionization History
Global HI signal
Fluctuating
HI signal: ACDM
Fluctuating
Detectability of the signal
Magnetic fields and
Thermal evolution:
Ionization evolution
Formation of
Formation of first SMBHs
Weak Gravitational
Power Spectrum
Cosmological weak
Cosmological weak
Constraints on
Conclusions
Title Page
•• ••

21. Cosmological weak lensing: power spectrum

22. Cosmological weak lensing: correlation function

i interdidi indgrietie i i i
Ionization History
Global HI signal
Fluctuating
HI signal: ACDM
Fluctuating
Detectability of the signal
Magnetic fields and
Thermal evolution:
Ionization evolution
Formation of
Formation of first SMBHs
Weak Gravitational
Power Spectrum
Cosmological weak
Cosmological weak
Constraints on
Conclusions
Title Page

23. Constraints on Primordial magentic fields

24. Lyman-alpha clouds

Ionization History
Global HI signal
Fluctuating
HI signal: ACDM
Fluctuating
Detectability of the signal
Magnetic fields and
Thermal evolution:
Ionization evolution
Formation of
Formation of first SMBHs
Weak Gravitational
Power Spectrum
Cosmological weak
Cosmological weak
Constraints on
Conclusions
Title Page
•• ••

25. Lyman-alpha clouds: line of sight density

Ionization History
Global HI signal
Fluctuating
HI signal: ACDM
Fluctuating
Detectability of the signal
Magnetic fields and
Thermal evolution:
Ionization evolution
Formation of
Formation of first SMBHs
Weak Gravitational
Power Spectrum
Cosmological weak
Cosmological weak
Constraints on
Conclusions
Title Page
44 >>

26. Lyman-clouds clouds: observables

27. Constraints on primordial magnetic fields

28. Conclusions

- Primordial tangled magnetic fields can cause formation of first structures in the universe
- Magnetic field-induced reionization leaves generic detectable signatures
- Magnetic field dissipation in the post recombination era could provide probes for 'dark age' in the universe.
- Formation of first SMBH might be influenced by the presence of primordial magnetic fields
- Present cosmological weak lensing amd Lyman-alpha clouds data puts strong constraints on primordial field strength and spectral index.

dgrietie
Ionization History
Global HI signal
Fluctuating
HI signal: ACDM
Fluctuating
Detectability of the signal
Magnetic fields and
Thermal evolution:
Ionization evolution
Formation of
Formation of first SMBHs
Weak Gravitational
Power Spectrum
Cosmological weak
Cosmological weak
Constraints on
Conclusions
Title Page
The Tage
4