Quest for Cosmic Origin

Tarun Souradeep

Physics Discipline IISER Pune, India

Proposal lead, CMB-Bharat proposal

Department Colloquium IIT Madras Sept. 18, 2019

The Realm of Cosmology

Basic unit: Galaxy

Size : 10-100 kilo parsec (kpc.)

Mass: 100 billion Stars

Measure distances in

 $= 2 \times 10^{30} Kg.$

light travel time

1 pc. (parsec) = 200,000 AU = 3.26 light yr.

Measure Mass in Solar mass

Andromeda Galaxy

Atlas of the Universe.com

The Realm of Cosmology

How can we even hope to comprehend this immensely large & complex Universe !?!

> Look for an appropriate simple model

The Isotropic Universe

Distribution of galaxies on the sky is broadly isotropic

Isotropy around every point implies Homogeneity

Cosmological principle
 FLRW models

Lick Observatory survey

North

The Expanding Universe

Einstein's General relativity applied to an uniform distribution of matter on cosmic scales leads to a smooth

Present Expansion rate: $H_0 = 71 \ km/s / Mpc$.

$$\Rightarrow$$
 Critical density, $\rho_{\rm c} = \frac{3H_0^2}{8\pi G} = 10^{-29}$ gm/cm³

Fig.: Ned Wright

`Standard' cosmological model

MAP990350

Where is all the Cosmic radiation ? Cosmic Microwave Background

Serendipitous discovery of the **dominant** radiation content of the universe as an extremely **isotropic**, **Black-body** bath at temperature $T_0=2.725$ (+/-0.002)K.

"Clinching support for Hot Big Bang model"

Cosmic Microwave Background

Pristine relic of a hot, dense & smooth early universe – Hot Big Bang model

Post-recombination : Freely propagating through (weakly perturbed) homogeneous & isotropic cosmos.

Pre-recombination : Tightly coupled to, and in thermal equilibrium with, ionized matter.

(text background: W. Hu)

CMB measurements

1st, 2nd and the 3rd decade

CMB measurements

1st, 2nd and the 3rd decade

STANDARD MODEL OF COSMOLOGY (~few% level) + Establishing Fundamental Tenets

(WMAP, Planck : > 30K citation each \rightarrow High scientific impact)

Background universe:
Paradigm of Hot & Dense early Universe: Absence of spectral distortions in CMB (COBE-FIRAS 1994), Cosmic thermal history
Isotropy of the Universe: Statistical isotropy of CMB fluctuations

Perturbed universe:

•Paradigm of CMB fluctuations: Acoustic phenomena in the pre-recombination Plasma universe established thru CMB Polarization

•Paradigm of Structure formation: Gravitational instability with adiabatic initial conditions established with Weak lensing of CMB, Baryon Acoustic Oscillations & CMB polarization

•Paradigm of Initial conditions: Indicative of simple Inflationary early Universe-- 'acausal' scale of perturbations adiabatic initial conditions

Planck sky maps

Gaussian Random field => Completely specified by angular power spectrum $l(l+1)C_l$:

Power in fluctuations on angular scales of ~ π/l

→ PLANCK'S POLARISATION OF THE COSMIC MICROWAVE BACKGROUND

Filtered at 5 degrees

Full sky map Filtered at 5 degrees

Filtered at 20 arcminutes

Planck Angular power spectrum

Planck CMB Polarization spectra

CMB@IUCAA: CMBAns Boltzmann code by Santanu Das

Ping the 'Cosmic drum'

(Fig: Einsentein)

More technically, the Green function

150 Mpc.

CMB Angular power spectrum

Fig:Hu & Dodelson 2002

CMB Angular power spectrum

Fig:Hu & Dodelson 2002

WMAP: Angular power spectrum

Independent, self contained analysis of WMAP multi-frequency maps

Multipole, I

(Saha, Jain, Souradeep Apj Lett 2006)

Cosmological Parameters

1.4%

6-Parameter ΛCDM

Parameter	Planck TT+lowP+lensin	ng
$\Omega_{\rm b}h^2$	0.02226 ± 0.00023	1%
$\Omega_{\rm c}^{\circ}h^2$	0.1186 ± 0.0020	1.7%
$100\theta_{\rm MC}$	1.04103 ± 0.00046	0.04%

'Standard' cosmological model: Flat, ACDM with nearly Power Law (PL) primordial power spectrum

 0.01027 ± 0.00014

 $r_{\rm drag}$.

Simple... yet, an exotic universe

- 95% of the energy of the universe is in some exotic form
- Dark Matter: we cannot see it directly, only via its gravitational affect.
- Dark Energy: smooth form of energy which acts repulsively under gravity.
- Some new Ultra-high energy (possibly, fundamental) physics for generating primordial perturbations.

Punctuated inflation

Early Universe in CMB

- **The Background universe**
 - Homogeneous & isotropic space: Cosmological principle
 - Flat (Euclidean) Geometry
- The nature of initial/primordial perturbations
 - Power spectrum : *'Nearly' Scale invariant /scale free form*

- Spin characteristics: (Scalar) Density perturbation ... cosmic (Tensor) Gravity waves !?!
- Type of scalar perturbation: Adiabatic no entropy fluctuations
- Underlying statistics: Gaussian

History of the Universe

Cosmic GW background From Inflation

Each polarization of Graviton behaves like a

-lar field

To/Must-Do for cosmology !!!!

Massless

2

Ratio of GW/Density perturbation: r ~ Energy scale of inflation

Currently, r < 0.07

Cosmic Information in CMB

CMB-Bhārat: a new Indian quest

Proposal to ISRO: Exploring Cosmic History & Origin (ECHO)

A multifaceted frontier science and astronomy mission

- map sky temperature, linear polarization (~60-1000 GHz),
- Multi-frequency (20+) \rightarrow Spectral science
- unprecedented sensitivity, accuracy and angular resolution.

Quest for Primordial Gravitational waves

- A "near-ultimate" CMB polarisation survey (2µK.arcmin sensitivity, 22 bands in 60-900 GHz)
- CMB Spectral capability (x 100 COBE-FIRAS)

Scientific promise:

•ULTRA- HIGH: Reveal signature of quantum gravity and ultra-HEP in the very early universe Nobel category

GW of Quantum Origin *(LIGO detection: classical GW)* •HIGH Goals: Neutrino physics: number of species, total mass and hierarchy; Map all dark matter and most baryons in the observable universe

Legacy : Improve probe of cosmological model by a factor of > 10 million; Rich Galactic and extra Galactic Astrophysics datasets
Unexpected Discovery space: Unique probe of 'entire'(z<2 x10⁶) thermal history of the universe

Balanced Impact-Returns profile

CMB Anisotropy & Polarization CMB temperature $T_{cmb} = 2.725 \text{ K}$ -200 μ K < Δ T < 200 μ K $\Delta T_{rms} \sim 70 \mu K$ $\Delta T_{pE} \sim 5 \ \mu K$ $\Delta T_{PB} \sim 10-100 \ nK$ Whorl patterns in polarization are telltale signature of **Primordial gravitational waves**

CMB-Bhārat Payload schematic

CMB-Bharat S/c Specs.

- Total wet mass
- Diameter
- Height
- Power

ข

4<u>.</u>0 m

- ≈ 2.0 tons
- ≈ 4.4 meter
- ≈ 4.0 meter
- ≈ 2 KW

Max. Launch capacity: Well suited for a GSLV Mk-III launch towards a Sun-Earth L2 orbit

CMB-Bharat: Orbit and scanning

SiC Telescope optics

The telescope is made of silicon carbide, a technology that has been space proven with the Herschel

Cryogenic Cooling chain

Schematic of a possible CMB Imager

- Tiled 150 mm wafers on a 50 cm diameter telecentric focal plane
- Estimates for number of pixels per wafer based on scaling of numbers from demonstrated ground based Advanced ACT dichroic (two color) feed-horn coupled detector arrays
- Proper utilization of focal plane real estate requires careful optimization involving trade-offs between various parameters (this schematic is a rough estimate)

2:1 Frequenc band (split into 2 b	y # of bands) pixels
HF 500-1000	~400*
HF 250-500	~400*
. 125-250	1204**
. 80-160	888**
• 50-100	252
• 25-50	198
15-30	42
	N _{pix_tot} ~3400
	N _{det_tot} ~13600
	(6800 per polarization)

- *reading out these many TES detectors on a single 150 mm wafer will be challenging with existing technology, new technologies are an active area of research
- ** greater than 60% of the detectors are in CMB bands

TES: focal plane design

Ground based: Simons Observatory

Boundaries of measurements: Power

Astronomical: Solar 10²⁶watts

CMB-Bharat: multi-faceted science

Indian Working groups

- **Cosmological parameters:** Lead: Dhiraj Hazra (APC, Paris → NISER?,...)
- Weak Lensing: Lead: Suvodip Mukherjee (CCA, NY)
- Foregrounds and CIB: Lead: Tuhin Ghosh (NISER)
- Instrument science: Lead: Zeeshan Ahmed (Stanford Univ)
- Inflation: Lead: L. Sriramkumar (IIT Madras)
- Statistics: Isotropy and Gaussianity: Lead: Aditya Rotti (U Manchester)
- Spectral Distortions: Lead: Rishi Khatri (TIFR)
- Cluster Physics from CMB: Lead: Subhabrata Majumdar (TIFR)
- End to end Modeling & Systematics: Lead: Ranajoy Banerji (U. Oslo)
- Simulations and Data Pipelines: Lead: Jasjeet Singh Bagla (IISER Mohali)

CMB Foregrounds : Rich A&A science (600-900GHz)

Cosmic Infrared Background (star formation)

CO line map" Cold Molecular Clouds

Dust in the Galaxy

Galactic Magnetic field

Next Generation CMB mission ?

LVM3.

SR

CMB-BHARAT mission presents an unique opportunity for India to take the lead on prized quests in fundamental science in a field that has proved to be a spectacular success, while simultaneously gaining valuable expertise in cutting-edge technology for space capability through global cooperation.

Thank you !!!