

Novel interferometric approaches to probe large-scale structures in the early Universe using redshifted 21 cm

Nithyanandan Thyagarajan (CSIRO Space & Astronomy)

Chris Carilli

(NRAO)

Bojan Nikolic, Pascal Keller

(Cambridge)

+ HERA Collaboration

I acknowledge the Traditional Owners of the land, sea and waters, of the area that we live and work on across Australia. I acknowledge their continuing connection to their culture and pay my respects to their Elders past and present.

Probing early Universe using Neutral Hydrogen

Sky-averaged 21cm signal from the

CSIRO,

EoR fluctuations using redshifted 21 cm line

CSIRO

Mesinger+2016

EoR fluctuations using redshifted 21 cm line

csiro

EoR 21cm fluctuations

Inadequate sensitivity for 3D tomography

Statistical Power Spectrum using spatial Fourier transform possible

Expectations/Results from First-generation

csiro

Currently limited by foregrounds and instrument systematics.

PAPER64 - Kolopanis et al. 2019, Cheng et al. 2018 MWA – Dillon et al. 2014, Beardsley et al. 2016, Barry et al. 2019, Li et al. 2019 LOFAR - Patil et al. 2017, Mertens et al. 2020 OVRO-LWA – Eastwood et al. 2019

Very recent results from HERA

HERA Collaboration (2022) at odds with

Bowman et al. (2018)

Challenges

And more challenges

- Knowledge and behavior of foregrounds point sources and diffuse emission
- Control of wide-field "pitchfork" effects
- Careful aperture design
- Control of antenna beam chromaticity
- Control of reflections in instrument
- Control of antenna positions
- Careful system design

- Calibration Accuracy
- Precise Instrument Design & Knowledge
- Polarization Leakage compounded with wide-field effects?
- Recombination lines ignored?
- Antenna-to-antenna variations in beam and signal path?
- Need for confirmation from independent techniques
- Cross-correlation with other approaches

Calibration Challenges

$$\mathcal{V}_{i,j}^{\mathsf{m}} = G_i G_j^* \mathcal{V}_{i,j}^{\mathsf{s}} + N_{i,j}$$

Calibration Precision ~10⁻⁵

Thorough knowledge of foregrounds and instrument required to achieve this precision

Similar conclusions from ...

- Trott & Wayth (2016) for MWA and SKA
- Patil et al. (2017) for LOFAR
- ...
- Sophisticated calibration strategies are required (Dillon et al. 2017; Orosz et al. 2018; Byrne+ 2020)

Datta et al. (2010)

Interferometric Solution to Calibration Woes

Carilli, Nikolic, **NT** et al. (2018)

Phase of bi-spectrum (closure phase) $V_{i,j}^{m} = G_{i}G_{j}^{*}V_{i,j}^{s} + N_{i,j}$ $C_{i,j,k}^{m} = V_{i,j}^{m}V_{j,k}^{m}V_{k,i}^{m}$

$$\phi_{i,j,k}^{\mathrm{m}} = \phi_{i,j}^{\mathrm{s}} + (\theta_i - \theta_j) + \phi_{j,k}^{\mathrm{s}} + (\theta_j - \theta_k) + \phi_{k,i}^{\mathrm{s}} + (\theta_k - \theta_i) + \phi_{i,j,k}^{\mathrm{n}} = \phi_{i,j,k}^{\mathrm{s}} + \phi_{i,j,k}^{\mathrm{n}}$$

Used in radio interferometry since 1950s Jennison (1958)

Closure Phase Independent of antenna calibration and its errors

csiro

Carilli, Nikolic, NT et al. (2018)

Small Perturbations to Closure Phase

Closure phase spectrum

Good correspondence between fluctuations.

Shape, Dynamic range, Sensitivity, etc.

Fluctuations in Visibility vs. Bispectrum Phase (Realistic GLEAM foreground + 21cmfast EoR HI)

- Small subset of HERA data from first observing season in 2018
- 61 dishes in total (50 good ones selected for analysis)
- 2 fields (Fornax A transit and J0136-30)
- 31 triads (29.2m equilateral)
- 2 fields x 18 nights x 22 min x 31 triads x 2 pol
- Data is essentially raw and uncalibrated
- Visually low-RFI spectral window (ΔB~10 MHz around 163 MHz) but no RFI flagging except median filtering (so RFI may still be present)

HERA layout

HERA Data Analysis Approach

- Data analysis paralleled by forward modeling
- Models verified to match data to first order using visibilities, images, etc. (Carilli, **NT**, et al. 2020)
- Set up expectations with standard delay spectrum approach as reference
- Same mathematical formalism as in delay spectrum approach
- Analysis with and without assumption of redundancy in triad measurements

Models (from PRISim)

Thyagarajan et al. (2020): PRD 102, 022002

HERA Instrument

- 61 dishes matching data
- Identical Beams: Fagnoni et al. 2019
- On-site layout (including non-redundancy)
- Effective Area: 100 m² in the spectral window

<u>EoR HI</u>

- 21cmFAST lightcone cubes
- 'Faint Galaxies' from Greig & Mesinger 2017
- Original 1.6 Gpc (~10 deg.) smoothed to 14' angular resolution and tiled to 30 deg on each side.

Foregrounds

- 30 deg. of GLEAM (J0136-30 field)
- 30 deg. Of GLEAM + Fornax A (Fornax field) from Byrne/FHD
- No diffuse emission due to large uncertainties

<u>Noise</u>

- $T_{sys} = T_{rx} + T_{ant}(f_0) (f/f_0)^{\alpha}, f_0 = 150 \text{ MHz}$
- T_{rx} = 162 K, $T_{ant}(f_0)$ = 200K, α = -2.55
- Consistent with HERA memos 59-60
- Still some uncertainty but not significant for this amount of data.

PRISim - simulator for wide-field radio interferometry

https://github.com/nithyanandan/PRISim

Model – Data Agreement

- Good agreement model and data to in-beam confusion limit
- Difference large scale residuals => Diffuse Galactic Emission (not in model)

Results on J0136-30 field

Thyagarajan & Carilli (2020): PRD, 102, 022002

Incoherent Averaging in Power

- Average over polarizations and k-bins each improve noise floor by a factor 1.4
- The baseline-dependent systematic bump at $k_{II} = 0.5$ h Mpc⁻¹ is reduced
- Room for improvement with more data

Power Spectrum Results

- Δ^2 < (316 pseudo-mK)² (k₁₁ = 0.33 h/pseudo-Mpc) but surrounded by systematic-limited bins
- $\Delta^2 < (1000 \text{ pseudo-mK})^2 (k_{||} = 0.875 \text{ h/pseudo-Mpc})$ surrounded by noise-limited bins
- Dynamic range between FG peak and HI power similar to standard delay PS
- Still a long way to go but hoping good quality data with HERA will get us to interesting constraints (improved results coming soon!)

Thyagarajan & Carilli (2020): PRD, 102, 022002

Summary

- <u>Independent approach</u> and constraints using bispectrum phase
- <u>Bypasses</u> the important problem of <u>antenna-based calibration systematics</u> but other systematics may remain
- <u>Simple analysis</u> using simple delay/Fourier-domain techniques on raw, <u>uncalibrated data</u>
- <u>Dynamic range</u> for spectral distinction is <u>similar to standard approaches</u>
- Using a subset of data and corresponding forward-models, we've shown it to be <u>data-limited</u>
- High quality data with <u>full HERA season 1 data</u> will definitely <u>improve sensitivity</u> by a factor of ~30-90 towards making interesting constraints (even if not an outright detection)

References:

Thyagarajan, Carilli, Nikolic (2018), PRL, 120, 251301 Carilli, Nikolic, Thyagarajan, et al. (2018), Radio Science, 53, 845 Thyagarajan & Carilli (2020), PRD, 102, 022001 Thyagarajan et al. (2020), PRD, 102, 022002 Carilli, Thyagarajan, et al. (2020), ApJS, 247, 67