

On the origin of solar wind and solar coronal heating

Vishal Upendran¹, Durgesh Tripathi¹ Inter University Centre for Astronomy and Astrophysics, Pune

Credit: u/HTPRockets on Reddit: Eruptive solar prominence and fine spicules along the limb

One fine day at IUCAA 🖤

The solar atmosphere

Credit: NSO/AURA/NSF & NASA/SDO;

Credit: NASA's Cosmos

The Magnetic Sun

What dictates the dynamics?

Credit: NASA/AIA-SDO

94 Å

131 Å

Let's embark on a journey of plasma, starting from the photosphere!

304 Å 171 Å 33<mark>5</mark> Å

1600 Å

T ≈ 5500 K, <mark>β > 1</mark>

Photosphere: The churning of plasma

Convection: Sun. Credit: DKIST/NSO/NSF/AURA

Convection: On a stove

Chromosphere: The ring of colours!

 $T \approx 10^4 - 8 \times 10^4 \text{ K}, \beta \approx 1$

2019/03/07 16:42:45,740

Chromosphere: Credit: Luc Viatour; UCAR

Plumes: IRIS, LMSAL/NASA, Krzysztof Barczynski

Some form of Jets?

Spicules and magnetic field: From Samanta et al 2019 Science 366, 6467

$T \approx 10^4 - 8 \times 10^4 \text{ K}, \beta \approx 1$

Transition to the corona

T ≈ 10⁵ K, β ≤ 1

Sun in Ne VIII by Don Hassler: 1996

Sun in Fe VIII by AIA team: 2015

4- 171 2015/03/06 23:44:47

÷

Solar corona: The crown of gas!

 $T\gtrsim 10^6$ K, $\beta<<1$

Energy transfer in the Active regions!

Flares: Convert magnetic energy to thermal energy.

Energy transfer in the Quiet regions!

Larger scale: Middle corona $T \gtrsim 10^6$ K, $\beta << 1$

Corona to solar wind

$T\gtrsim 10^6$ K, β \thickapprox 1

$T \gtrsim 10^6$ K, $\beta \ge 1$

Plasma flowing out!

Credits: NASA SVS; data from Craig DeForest, SwRI

Sweeping past the Earth

$T \gtrsim 10^6$ K, $\beta \ge 1$

Credits: NASA's Goddard Space Flight Center/Scientific Visualization Studio/Greg Shirah: https://svs.gsfc.nasa.gov/3902

Coronal morphology

Solar wind mainly comes $T \gtrsim 10^6$ K, from these regions.

Credit: AIA/SDO LMSAL

Coronal hole

Active Region

These regions are hotter, brighter

BackgroundQ

Origins of the solar wind?

Check out my talk at Robert Bosch Centre for Data Science and Artificial Intelligence on Wednesday!

Solar wind speed and Coronal hole area. From: Wang & Sheeley, ApJ 355:726-732,1990 June 1

Solar wind sources from Deep learning, from: Vishal Upendran et. al (2020). Solar wind prediction using deep learning. Space Weather, 18, e2020SW002478

Coronal holes (CH) and Quiet Sun (QS)

Visually, CHs seem similar to QS at lower temperatures \rightarrow **Differentiation** key to understanding Coronal heating and solar wind emergence!

Differentiation: Gross properties with Magnetic fields

Figures from Wiegelmann & Solanki (2004).

Typical loop height is less in CHs \rightarrow large differences seen as intensity in the corona?

Science question: How do local plasma conditions vary in CHs and QS with (i). Height, and (ii). Magnetic flux density?

Main paper: Vishal Upendran & Durgesh Tripathi 2022, "On the formation of solar wind & switchbacks, and quiet Sun heating", ApJ 926 138

Paper on C II: Vishal Upendran & Durgesh Tripathi 2021, "Properties of the C II 1334 Å Line in Coronal Hole and Quiet Sun as Observed by IRIS", ApJ 922 112

Study line intensity and velocity as a function of |B|: Mg II h & k, C II 1334 Å (chromosphere) and Si IV 1394 Å (transition region). ≈ 1,000,000 spectra analyzed!

Mg II k line intensity: Also see Kayshap+ 2018; expanded in this work. Si IV 1394 Å dynamics: Also see Tripathi, Nived and Solanki, 2021; expanded data in this work.

Velocity cross-correlation: Mg II k3 (10⁴ K) - Si IV(10⁵ K)

- TR downflows & upflows correlated with chromospheric downflows & upflows.
- TR upflows correlated with chromospheric downflows.

Unified scenario of solar wind emergence and coronal heating

Unified scenario of solar wind emergence and coronal heating

Extra slides

Field line braiding

Field line braiding: From Parker EN (1994), International Series in Astronomy and Astrophysics, vol 2. Oxford University Press, Oxford

Field line braiding: From V. Hansteen et al 2015 ApJ 811 106

Differentiation: Gross properties with Magnetic fields

- Network boundaries $\leftarrow \rightarrow$ Ne VIII Los velocity (Hassler+ 1999).
- Ne VIII: Largest Doppler shifts $\leftarrow X \rightarrow$ Intensity maps.
- Heating process either dumps energy locally for heating corona, or for accelerating solar wind.
- Solar wind originates in "coronal funnels" (Tu+ 2005).

Differentiation: Gross properties

Intensities with **B**

- CHs have lesser intensity w.r.t QS for
- **CH-QS** differentiation already present at chromosphere.

60

Average velocities with **B**

- Chromosphere and TR redshifted on an average
- Average velocity almost consistent across CH and QS.
- Velocity increase: k2 < k3< C II < Si IV.

Main observations: summary

- CHs have lesser **intensity** w.r.t QS for similar |**B**|.
- Chromosphere and TR redshifted on an average
- Average velocity **almost consistent** across CH and QS.
 - Velocity increases with height (~ Temperature).
- **Excess redshifts and blueshifts** in CHs over $QS \rightarrow flows$ increase with |B|.
- TR upflows correlated with chromospheric upflows and downflows.
 - CH upflows larger for similar chromospheric flows.
- TR downflows only **correlated** with chromospheric downflows.
 - QS TR downflows larger.

Explaining velocity correlations

Explaining intensity differences: From TNS2021

- Loops in QS are longer than CHs.
- More open field in CHs → more trapped plasma in QS → larger intensity in QS (Weigelmann & Solanki, 2004).
- What about the velocity differences?
- Final picture: combine with "impulsive heating" of correlated flows!

Similar processes: Deviations from Gaussianity

 \mathbf{e} (\mathbf{c} and \mathbf{f}) correspond to moments of blueshifted (redshifted) profiles. The bands of black and orange, with stars over-plotted, correspond to the respective moment of a single Gaussian fit. The y-axis has been broken to depict the variation with $|\mathbf{B}|$ better.

Si IV 1394 Å dynamics: Tripathi+ 2021, expanded data

- CHs are darker than QS.
- CHs are less redshifted and more blueshifted than QS.
- The excess blueshifts in CH are shown to be a signature of solar wind emergence.

Velocity cross correlation: Same direction

Velocity cross correlation: Opposite direction

