

Quantum Diffusion During Cosmic Inflation

Vincent Vennin

Physics Colloquium, Indian Institute of Technology in Madras 8 November 2023

Hubble law (1929)


```
Edwin Hubble (1889-1953)
```


v = HD

GENERAL RELATIVITY

 $G_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu}$

Space-time (curved) Geometry

Matter (particules, fields, fluids, etc)

COSMIC PIE

COSMIC MICROWAVE BACKGROUND

HORIZON PROBLEM

 $ds^2 = -c^2 dt^2 + a^2(t) d\vec{x}^2$ (Friedmann-Lemaître-Robertson-Walker metric)

Light travels along null geodesics: $ds^2 = 0$

At the decoupling time, angular size of the cosmic horizon ~ 0.5 deg \sim angular diameter of the moon

There should be 450 000 causally disconnected patches!

Gravity is an attractive force: $\ddot{a} < 0$. Around t = 0 ("big bang"), $a \propto t^{p<1} \Longrightarrow d_0$ is finite.

COSMIC INFLATION

 $ds^2 = -dt^2 + a^2(t)d\vec{x}^2$ (Friedmann-Lemaître-Robertson-Walker metric)

We thus need a primordial phase of accelerated expansion: $\ddot{a} > 0$. We call this "inflation".

It cannot be realised with matter in the form of Newtonian <u>fluids</u>. In any case, it occurs at super-high energy where matter should rather be described by of <u>fields</u>.

In a cosmological background, a scalar field behaves "like" a perfect fluid with

$$\begin{cases} \rho = \frac{\dot{\phi}^2}{2} + V(\phi) \\ p = \frac{\dot{\phi}^2}{2} - V(\phi) \end{cases} \implies \text{inflation takes place if } V(\phi) > \dot{\phi}^2 \end{cases}$$

Cosmic Inflation: $\ddot{a} > 0$ $ds^{2} = -dt^{2} + a^{2}(t) d\vec{x}^{2}$

Hubble parameter $H = \dot{a}/a$ H^{-1} : characteristic time scale, or length scale (c = 1), of the expansion

Insensitive to space-time curvature

"unambiguous" vacuum state

Feels space-time curvature

Quantum particule creation

(analogous to Schwinger effect, Hawking effect, etc)

Cosmic Inflation

Cosmic Inflation

Cosmological perturbations

Single scalar gauge-invariant degree of freedom $v \ni \delta \phi, \delta g_{\mu\nu} \propto \delta T/T$

Quantised starting from Bunch-Davies vacuum $v \longrightarrow \hat{v}$

Quantum mean values compared with statistical averages in the sky

Cosmological Perturbation Theory

Density fluctuations are small at CMB scales ------ Perturbation Theory

$$g_{\mu\nu}(\vec{x},t) = \bar{g}_{\mu\nu}(t) + \hat{\delta g}_{\mu\nu}(\vec{x},t)$$

$$\phi(\vec{x},t) = \bar{\phi}(t) + \hat{\delta \phi}(\vec{x},t)$$
Homogeneous and isotropic
Solution of the classical problem

—> Quantum-field-theory on curved space-time

Strong assumption: universe is quasi homogeneous and isotropic at <u>all scales</u>

This may be broken at:

- Larger scales: space-time structure beyond the observable universe
- Smaller scales: formation of extreme objects such as primordial black holes, heavy clusters, large voids etc

Probing the end of inflation

Probing the end of inflation

Probing the end of inflation

Primordial black holes

- Could constitute part or all of dark matter Chapline 1975 $M = 10^{16} - 10^{17}$ g, $10^{20} - 10^{24}$ g, $10 - 10^{3}M_{\odot}$
- Could provide progenitors for the LIGO/VIRGO events $M = 10 100 M_{\odot}$
- Could provide seeds for cosmological structures Mészáros 1975 $M > 10^3 M_{\odot}$
- Could provide seeds for supermassive black holes in galactic nuclei $M > 10^3 M_{\odot}$ Carr, Rees 1984 Bean, Magueijo 2002

How likely is it to form a given cosmological structure?

Separate Universe $ds^2 = a^2 (-d\eta^2 + d\vec{x}^2)$

de-Sitter universe: $a = -1/(H\eta)$, $-\infty < \eta < 0$

If a large fluctuation develops at x_1 , this cannot affect the local geometry at x_2

Separate universe: On large scales, the universe can be described by an ensemble of independent, locally homogeneous and isotropic patches

Salopek & Bond; Sasaki & Stewart; Wands, Malik, Lyth & Liddle

Stochastic Inflation

Coarse-grained field
$$\hat{\Phi}_{cg}(N, \vec{x}) = \int_{k < \sigma Ha(N)} d\vec{k} \left[\Phi_{\vec{k}}(N)e^{-i\vec{k}\cdot\vec{x}}\hat{a}_{\vec{k}} + \Phi_{\vec{k}}^{\star}(N)e^{i\vec{k}\cdot\vec{x}}\hat{a}_{\vec{k}}^{\dagger} \right]$$

Quantum fluctuations
source the background
Equation of motion $\frac{d}{dN}\Phi_{cg} = \mathcal{F}_{background}(\Phi_{cg}) + \xi$ Starobinsky, (1982) 1986

Why does inflation look single field to us?

Koki Tokeshi, VV, 2023

Most high-energy constructions that allow for a phase of inflation contain many additional degrees of freedom Still, all cosmological observations are compatible with inflation being driven by a single field.

WHY?

Volume selection effet: The universe is dominated by the regions that inflate most, hence that contribute the largest volume

Theory of constrained stochastic processes: one can derive a modified Langevin equation, that only samples realisations of (or above) a given duration.

One can thus restrict the analysis to those regions of the universe where observers are most likely to end up in!

Why does inflation look single field to us?

Koki Tokeshi, VV, 2023

Double quadratic inflation: $V = \frac{m_1^2}{2}\phi_1^2 + \frac{m_2^2}{2}\phi_2^2$

Stochastic-δN formalism

$$\zeta(t, x) = N(t, x) - N_0(t) \equiv \delta N$$

Lifshitz, Khalatnikov (1960) Starobinsky (1983) Wands, Malik, Lyth, Liddle (2000)

The realised number of e-folds is a stochastic quantity:

$$\zeta_{\text{coarse grained}} = \mathcal{N} - \langle \mathcal{N} \rangle$$

Enqvist, Nurmi, Podolsky, Rigopoulos (2008) ; Fujita, Kawasaki, Tada, Takesako (2014); VV, Starobinsky (2015)

Exponential tails

Pattison, VV, Assadullahi, Wands (2017) Ezquiaga, Garcia-Bellido, VV (2020)

Impact on PBHs

Impact on LSS

Ezquiaga, Garcia-Bellido, VV (2022)

Exponential tails in non-slow-roll models

Conclusions

- The back-reaction of vacuum quantum fluctuations on the background dynamics can be incorporated within the formalism of stochastic inflation
- This is necessary to describe regimes leading to large fluctuations, such as those yielding primordial black holes
- Quantum diffusion leads to exponential tails: non-perturbative breakdown of Gaussian statistics
- Most cosmological observables can be reconstructed from first-passage time analysis (power spectrum, mass functions, clustering, n-point functions)
- Quantum diffusion makes the CMB probe the whole potential: models leading to PBHs are constrained by the CMB, even if those two sets of scales are well separated
- What is the best strategy to look for exponential tails in the data?