A Primordial Solution to Tensions in Cosmology

Akhil Antony

Discordances in cosmology and the violation of slow-roll inflationary dynamics.

Akhil Antony, Fabio Finelli, Dhiraj Kumar Hazra, Arman Shafieloo https://arxiv.org/abs/2202.14028

One spectrum to cure them all: Signature from early Universe solves major anomalies and tensions in cosmology.

Dhiraj Kumar Hazra, **Akhil Antony**, Arman Shafieloo JCAP 08(2022) 063 (<u>https://arxiv.org/abs/2201.12000</u>).

Cosmic Microwave Background CMB

- Remnant radiation from the big bang epoch.
- Uniform temperature of
 2.726K with tiny fluctuations
- Image of the Universe at the decoupling epoch.
- CMB Probes- COBE, WMAP, Planck (space probes); ACT, SPT (ground based)

Cosmic Microwave Background CMB

Cosmic Microwave Background

Excess damping acoustic peaks

$$\Delta D = D_{extension} - D_{\Lambda CDM}$$

- Indicate extra smoothing of acoustic peaks at multipoles higher than 800
- Low amplitude at multipoles lower than 40.

Observation AObservation B
$$X = x_a \pm \sigma_a$$
 $X = x_b \pm \sigma_b$

• Observation A is in tension with observation B when

$$|x_a - x_b| > 2\sqrt{\sigma_a^2 + \sigma_b^2}$$

Alens Anomaly

- A_L is a consistency parameter
- Planck prefer $A_L > 1$
 - 1. $A_L = 1.243 \pm 0.096$ (P18 TT + lowE, $\Delta \chi^2 = 8.7$) 2. $A_L = 1.180 \pm 0.065$

(P18 TTTEEE + lowE, $\Delta \chi^2 = 9.7$)

 S_8 tension

- $S_8 = \sigma_8 \sqrt{\Omega_m/0.3}$
- DES survey provides $S_8 = 0.772^{+0.018}_{-0.017}$
- KiDS 1000 provide $S_8 = 0.759^{+0.024}_{-0.021}$
- Planck TT+lowl+lowE : $S_8 = 0.840 \pm 0.024$

Planck TTTEEE+lowl+lowE : $S_8 = 0.834 \pm 0.016$

 S_8 tension

 H_0 tension

- Planck TT+lowl+lowE : $H_0 = 66.88 \pm 0.92$ TTTEEE+lowl+lowE : $H_0 = 67.27 \pm 0.60$
- SH_0ES measurement : $H_0 = 73.04 \pm 1.04$
- Time delay cosmography of the lensed quasars and calibration of the Tip of Red Giant Branch (TRGB) indicates to a higher Hubble constant.

 H_0 tension

Curvature problem

- ΛCDM prefers curved space over flat space
 - $\Omega_K = -0.056^{+0.028}_{-0.018}$ (P18 TT + lowE)
 - $\Omega_K = -0.044^{+0.018}_{-0.015}$ (P18 TTTEEE + lowE)

Curvature problem

 $(P_{1}8 TT + lowE)$

- ΛCDM prefers curved space over flat space
 - $\Omega_K = -0.056^{+0.028}_{-0.018}$

• $\Omega_K = -0.044^{+0.018}_{-0.015}$ (P18 TTTEEE + lowE)

Anomalies and tensions

	Planck TT	Planck TP	Theoretical/ Other observations
A_L	1.243 ± 0.096	1.180 ± 0.065	1.0
Ω_k	-0.056 ± 0.024	-0.042 ± 0.017	0.0
S_8	0.840 ± 0.024	0.834 ± 0.016	$0.759^{+0.024}_{-0.021}$
H_0	66.88 ± 0.92	67.27 ± 0.60	73.05 ± 1.04

Can primordial features reproduce the extra lensing effect?

Methodology

Modified Richardson Lucy

Requires unlensed CMB spectrum

Methodology

- Reconstruct the primordial power spectrum that mimics the extra lensing
- Here C_{ℓ}^{data} is the difference between Standard model + A_{lens} best fit lensed angular power spectrum and the spectrum for same set of parameter but A_{lens} (= 1 here).
- Above unlensed spectrum contains excess lensing signature due to $A_{lens} > 1$

Methodology

Reconstructed spectrum that brings back cosmological concordance.

 A_{lens} Anomaly

[Left] Marginalized posteriors of lensing amplitude (A_{lens}) obtained in the Standard Model and when reconstructed spectrum is used. **[Right]** Marginalized posteriors of χ^2 from CMB in these two analyses compared with the Standard Model where lensing amplitude is fixed to 1.

Curvature (Ω_k) problem

 S_8 tension

 H_0 tension

 $A_{lens} + \Omega_k$

An analytical template that mimics Reconstruction

Power spectrum template Functional form

- Reconstructed power spectrum has the following characteristic
 - Oscillations in the spectrum are nearly linear in k
 - Oscillations decay towards large scales
 - Peaks are more pronounced than the trough

$$\mathcal{P}_{New}(k) = \mathcal{P}_{Power\ Law}(k) \left[1 + \frac{\alpha_1 \sin(\omega(k-k_0))}{\left(1 - \alpha_2 \sin(\omega(k-k_0))\right) \left(1 + \beta(k-k_0)^4\right)} \right]$$

Results

Restricted spectrum

$$\mathcal{P}_{Restricted}(k) = \mathcal{P}_{Power \ Law}(k) \left[1 + \frac{\alpha_1 \sin(\omega(k-k_0))}{1+\beta(k-k_0)^4} \right]$$

Model/Data	P18 TT	P18 TT + HST
New spectrum	-1.14 ± 0.53	2.67 ± 0.53
Restricted spectrum	-0.58 ± 0.52	3.4 ± 0.53

Restricted spectrum

Data	ln[Bayes factor]	C.L.
P18TP	-0.01 ± 0.54	95%
P18TP + HST	1.46 ± 0.55	99.5%
P18TT + ACT + DES + HST	2.28 ± 0.65	99.6%
P18TP + ACT + DES + HST	1.94 ± 0.66	98.7%
P18TP + DES + HST	2.32 ± 0.64	99.5%
P18TP + ACT + DES	-0.34 ± 0.66	08 5%
+ BAO $+$ SN $+$ HST	-0.34 ± 0.00	90.070
P18TP + ACT + DES	-0.85 ± 0.66	99.5%

Posterior distribution of parameters

Posterior distribution of parameters

Correlations

An intermediate fast roll phase in inflation that solves the tension.

Hubble Slow-roll Parameter Inflationary model

- A model that mimics the above power spectrum
- We work with Hubble slow roll parameter instead of a potential
- The baseline function

$$\epsilon_{H}^{b}(N) = \epsilon_{1} \exp \left[\epsilon_{2}(N - N_{*})\right]$$

- N is the no of e-folds of expansion happened to scalar factor a
- $r \simeq 16\epsilon_1$ and $n_s = 1 2\epsilon_1 \epsilon_2$

Hubble slow parameter

Inflationary model

• The full feature form

$$\epsilon_{H}(N) = \epsilon_{H}^{b}(N) \left(1 + \frac{\alpha \cos \left[\omega (N - N_{0}) \right]}{1 + \beta (N - N_{0})^{2}} \right)$$

- Generates resonant features ($\beta \rightarrow 0$) and sharp features ($\omega \rightarrow 0$)
- This creates an envelope of sin + sin log + sin oscillation.

Datasets analysed

- The dataset we studied are the following:
 - 1. TT lowl lowE BK18- P18TT+BK18
 - 2. TTTEEE lowl lowE BK18 P18TP+BK18
 - 3. TTTEEE lowl lowE BK18 lensing P18TPL+BK18
 - 4. TEEE lowl lowE BK18- P18TEEE+BK18
- We use H_0 latest release along with above datasets S21.

Results - Power spectrum

Results - Power spectrum

Results

DATA	$\Delta \chi^2$	H_0	<i>S</i> ₈
P18TT+BK18	-8.3	66.86 ± 0.86	0.840 ± 0.022
		68.06 ± 1.14	0.814 ± 0.027
P18TP+BK18	-10.7	67.26 ± 0.59	0.835 ± 0.015
		67.71 ± 0.66	0.826 ± 0.017
	-8.4	67.35 ± 0.53	0.832 ± 0.012
P18 I PL+BK18		67.63 ± 0.57	0.829 ± 0.013
P18TEEE+BK18	-2.7	67.91 ± 0.77	0.814 ± 0.020
		67.63 ± 0.86	0.819 ± 0.022

Results-With Riess21

DATA	$\Delta \chi^2$	H_0	<i>S</i> ₈
P18TT+BK18+S21	-19.5	69.41 ± 0.68	0.781 ± 0.017
		70.85 ± 0.78	0.754 ± 0.018
P18TP+BK18+S21	-19.3	68.71 ± 0.53	0.802 ± 0.014
		69.27 ± 0.58	0.791 ± 0.014
P18TPL+BK18+S21	-11.5	68.56 ± 0.48	0.832 ± 0.012
		68.90 ± 0.51	0.829 ± 0.013
P18TEEE+BK18+S21	-1.2	69.76 ± 0.63	0.808 ± 0.011
		69.77 ± 0.67	0.804 ± 0.011

Results-Correlation

Results

Results - Residuals

Results - Reconstructed Potential

Conclusions

- An intermediate fast roll in inflationary dynamics for a period of 0.5 e-folds solves the lensing anomaly in a flat Universe.
- This has a completely different signature in the polarisation anisotropy spectrum compared to A_L .
- Simultaneously prefers a lower value of S_8 and higher value of H_0 .
- When priors on H_0 introduces, it gives 20 improvement in χ^2 with better agreement to SH0ES data.
- Reconstruction of potential points towards damped oscillatory features in baseline slow roll potential.