Effects of Nonstandard Cosmologies on PBH and induced GW

Sukannya Bhattacharya

IIT Madras

2101.02234 [astro-ph.CO] 2010.05071 [astro-ph.CO] 1912.01653 [astro-ph.CO]

10/04/2021

< = > < 률 > < 글 > < 글 >

Why study them together?

SOC

イロト イロト イヨト イヨン

Primordial Black Holes

• What are PBHs?

Formed in the early universe when the density fluctuations of high amplitude $(\delta \equiv \frac{\rho - \bar{\rho}}{\bar{\rho}} > \delta_c)$ re-enter the Hubble horizon at post-inflationary epochs and collapse gravitationally.

$$M \propto M_H = \frac{4}{3}\pi (H^{-1})^3 \rho = \frac{4\pi m_P^2}{H}$$

10/04/2021

2/19

Primordial Black Holes

• What are PBHs?

Formed in the early universe when the density fluctuations of high amplitude $(\delta \equiv \frac{\rho - \bar{\rho}}{\bar{\rho}} > \delta_c)$ re-enter the Hubble horizon at post-inflationary epochs and collapse gravitationally.

$$M \propto M_H = \frac{4}{3}\pi (H^{-1})^3 \rho = \frac{4\pi m_P^2}{H}$$

• Why PBHs?

 \bullet Nonrelativistic, massive and collisionless: Can be a candidate for DM: 100% DM can be constituted by PBH for a particular mass range.

• GW detectors (LIGO/Virgo) observed binary black hole mergers: Can LIGO/Virgo events $M\sim M_{\odot}$ be described by PBH?

• Ultra light PBHs $M < 10^{15}$ gm are radiating violently, relativistic particles are injected in the cosmos \rightarrow explanation of an observed energetic particle.

• A tool to probe smaller scales of inflation. \rightarrow Accommodate $P_{\zeta}(k_{\rm CMB}) \sim 10^{-9}$ and $P_{\zeta}(k \gg k_{\rm CMB}) \sim 10^{-2}$ together in an inflation model.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Primordial Black Holes

• What are PBHs?

Formed in the early universe when the density fluctuations of high amplitude $(\delta \equiv \frac{\rho - \bar{\rho}}{\bar{\rho}} > \delta_c)$ re-enter the Hubble horizon at post-inflationary epochs and collapse gravitationally.

$$M \propto M_H = \frac{4}{3}\pi (H^{-1})^3 \rho = \frac{4\pi m_P^2}{H}$$

• Why PBHs?

- \bullet Nonrelativistic, massive and collisionless: Can be a candidate for DM: 100% DM can be constituted by PBH for a particular mass range.
- GW detectors (LIGO/Virgo) observed binary black hole mergers: Can LIGO/Virgo events $M\sim M_{\odot}$ be described by PBH?
- Ultra light PBHs $M<10^{15}$ gm are radiating violently, relativistic particles are injected in the cosmos \rightarrow explanation of an observed energetic particle.
- A tool to probe smaller scales of inflation. \rightarrow Accommodate $P_{\zeta}(k_{\rm CMB}) \sim 10^{-9}$ and $P_{\zeta}(k \gg k_{\rm CMB}) \sim 10^{-2}$ together in an inflation model.

• Basic quantities

- δ_c depends on background EoS w.
- \bullet For $0 < w \leq 1,$ the fraction of the energy density collapsing into a PBH is: $\beta\gamma.$
- β : mass fraction \rightarrow probability of collapse. β depends on δ_c and $P(\delta)$. $P(\delta)$ depends on $P_c(k) \leftarrow$ links PBH to inflation.

Inflation models and PBH

- Requirement: Large $P_\zeta(k) \propto 1/\epsilon$. In RD, about 10% abundance of PBH requires $P_\zeta(k) \sim 10^{-2}$.
- $\bullet~\epsilon$ has to be very small \rightarrow ultra-slow roll regime.

Alternate cosmological evolution and PBH mass

- w = 1: kination epoch motivated in quintessential inflation mmodels.
- Moduli vacuum misalignment in String theory inspired models of inflation \rightarrow post-inflationary moduli domination w = 0 + moduli reheating.

Sukannya Bhattacharya (IITM)

PBH in a stiff-domination

$$\begin{split} M(k) &= \left(\frac{\gamma}{2G}\right) \left(2 \times \frac{\pi^2 g_*^{\mathrm{eq}}}{30}\right)^{\frac{1}{3w+1}} \left(\frac{8\pi G}{3}\right)^{\frac{1}{3w+1}} \left(\frac{g_s(T_{\mathrm{eq}})}{g_s(T_1)}\right)^{\frac{3w-1}{3(3w+1)}} \\ &\times \left(a_{\mathrm{eq}}T_{\mathrm{eq}}\right)^{\frac{3(1+w)}{3w+1}} T_1^{-\frac{3w-1}{3w+1}} k^{-\frac{3(1+w)}{3w+1}} \end{split}$$

Sukannya Bhattacharya (IITM)

PBH Abundance: Relevant Quantities

- Critical density contrast: $\delta_c = \frac{3(1+w)}{(5+3w)} \sin^2 \left(\frac{\pi \sqrt{w}}{1+3w} \right)$
- $\bullet\,$ Fraction of the Horizon mass going into PBH: $\gamma=0.2$
- Mass fraction: $\beta(M) \equiv \frac{1}{\rho_{\text{tot}}} \frac{d\rho_{\text{PBH}(M)}}{d \ln M} = 2 \int_{\zeta_c}^{\infty} \frac{1}{\sqrt{2\pi}\sigma(M)} e^{-\frac{\zeta^2}{2\sigma(M)^2}} d\zeta = \operatorname{erfc}\left(\frac{\zeta_c}{\sqrt{2\sigma(M)}}\right)$ $\zeta_c = \frac{(5+3w)}{2(1+w)} \delta_c$: critical value of curvature perturbation. $\sigma^2(M) \approx P_{\zeta}(k).$
- Abundance: Fraction of PBH of a particular mass M as DM: $f_{\text{PBH}}(M) \equiv \frac{\Omega_{\text{PBH}}(M)}{\Omega_{odm}}$
- Total abundance: Fraction of total PBH as DM: $f_{\text{PBH}}^{\text{tot}} \equiv \frac{\Omega_{\text{PBH}}}{\Omega_{cdm}} = \int f_{\text{PBH}}(M) d\ln M$.

イロト イロト イヨト イヨト

PBH Abundance: Relevant Quantities

- Critical density contrast: $\delta_c = \frac{3(1+w)}{(5+3w)} \sin^2\left(\frac{\pi\sqrt{w}}{1+3w}\right)$
- $\bullet\,$ Fraction of the Horizon mass going into PBH: $\gamma=0.2$
- Mass fraction: $\beta(M) \equiv \frac{1}{\rho_{\text{tot}}} \frac{d\rho_{\text{PBH}(M)}}{d \ln M} = 2 \int_{\zeta_c}^{\infty} \frac{1}{\sqrt{2\pi\sigma(M)}} e^{-\frac{\zeta^2}{2\sigma(M)^2}} d\zeta = \operatorname{erfc}\left(\frac{\zeta_c}{\sqrt{2\sigma(M)}}\right)$ $\zeta_c = \frac{(5+3w)}{2(1+w)} \delta_c$: critical value of curvature perturbation. $\sigma^2(M) \approx P_{\zeta}(k)$.
- Abundance: Fraction of PBH of a particular mass M as DM: $f_{\text{PBH}}(M) \equiv \frac{\Omega_{\text{PBH}}(M)}{\Omega_{\text{odd}m}}$
- Total abundance: Fraction of total PBH as DM $f_{\text{PBH}}^{\text{tot}} \equiv \frac{\Omega_{\text{PBH}}}{\Omega_{cdm}} = \int f_{\text{PBH}}(M) d\ln M$.

 $k \to P_{\zeta}(k)$ $M \to f_{\text{PBH}}(M).$

Sukannya Bhattacharya (IITM)

10/04/2021 6/19

イロト イヨト イヨト

Dynamics of PBH formation

• Energy density during a single additional pre-BBN epoch:

$$\rho(T) = \left(\frac{3}{8\pi G}\right) \left(\frac{\gamma}{2G}\right)^2 M^{-2} = \frac{\pi^2}{30} g_*(T_1) \left(\frac{g_s(T)}{g_s(T_1)}\right)^{1+w} \left(\frac{T}{T_1}\right)^{3(1+w)} T_1^4$$

• $\rho(T_1) = \rho^{\mathrm{rad}}(T_1).$

• PBH of mass M is formed at temperature T. At formation, $\frac{\rho_{\text{PBH}}(M)}{\rho_T} = \gamma \beta(M)$.

$$f_{ ext{PBH}}(M) = \gamma eta(M) igg(rac{g_s(T)}{g_s(T_1)} igg)^w igg(rac{g_s(T_1)}{g_s(T_{ ext{eq}})} igg) igg(rac{T}{T_1} igg)^{3w} igg(rac{T_1}{T_{ ext{eq}}} igg) igg(rac{\Omega_m h^2}{\Omega_c h^2} igg)$$

• $f_{\text{PBH}}^{\text{tot}} = \int f_{\text{PBH}}(M) d\ln M$.

200

《口》 《圖》 《臣》 《臣》

Dynamics of PBH formation

• Energy density during a single additional pre-BBN epoch:

$$\rho(T) = \left(\frac{3}{8\pi G}\right) \left(\frac{\gamma}{2G}\right)^2 M^{-2} = \frac{\pi^2}{30} g_*(T_1) \left(\frac{g_s(T)}{g_s(T_1)}\right)^{1+w} \left(\frac{T}{T_1}\right)^{3(1+w)} T_1^4$$

• $\rho(T_1) = \rho^{\mathrm{rad}}(T_1).$

• PBH of mass M is formed at temperature T. At formation, $\frac{\rho_{\text{PBH}}(M)}{\rho_T} = \gamma \beta(M)$.

$$f_{ ext{PBH}}(M) = \gamma eta(M) igg(rac{g_s(T)}{g_s(T_1)} igg)^w igg(rac{g_s(T_1)}{g_s(T_{ ext{eq}})} igg) igg(rac{T}{T_1} igg)^{3w} igg(rac{T_1}{T_{ ext{eq}}} igg) igg(rac{\Omega_m h^2}{\Omega_c h^2} igg)$$

• $f_{\text{PBH}}^{\text{tot}} = \int f_{\text{PBH}}(M) d\ln M$.

200

《口》 《圖》 《臣》 《臣》

Dynamics of PBH formation

• Gain over PBH formation at radiation domination:

$$g_{f} \equiv \frac{f_{\rm PBH}(M)}{f_{\rm PBH}^{\rm rad}(M)} \simeq \frac{\beta(M)}{\beta^{\rm rad}(M)} \left(\frac{T}{T_{1}}\right)^{3w-1} > 1.$$

Sukannya Bhattacharya (IITM)

1 10/04/2021 8/19

990

イロト イロト イヨト イヨト

Results: Analysis with different power spectra

•
$$P_{\zeta}(k) = A_s \left(\frac{k}{k_*}\right)^{n_s - 1} + f(P_p, k_p, ...).$$

- 1. Scale-independent power spectrum; 2. Broken Power Law; 3. Gaussian Power Spectrum.
- 2 and 3 are theoretically motivated.

10/04/2021

9/19

Results: Analysis with different power spectra

$$\bullet \ P_{\zeta}(k) = A_s \left(\frac{k}{k_*} \right)^{n_s - 1} + f(P_p, k_p, \ldots).$$

- 1. Scale-independent power spectrum; 2. Broken Power Law; 3. Gaussian Power Spectrum.
- 2 and 3 are theoretically motivated.

• 3. Gaussian Power Spectrum $P_{\zeta}(k) = A_s \left(\frac{k}{k_*}\right)^{n_s - 1} + P_p \exp\left[-\frac{(N_k - N_p)^2}{2\sigma_p^2}\right].$

• Analysis done for $k_p \sim 10^6 Mpc^{-1}$ (~solar mass PBH) and $k_p \sim 10^{12} Mpc^{-1}$ (LISA)

PBH Mass Spectra

 $T_1 = 10 \text{ MeV}$

<ロト < 回 ト < 三 ト < 三 ト 三 三 つくで</p>

Sukannya Bhattacharya (IITM)

10/04/2021 10/19

PBH Mass Spectra

 $T_1 = 10 \text{ MeV}$

k_p		Scale-inv P_p	Broken Power Law P_p	Gaussian P_p
$2 \times 10^6 \mathrm{Mpc}^{-1}$	w = 1/3	0.021	0.0275	0.025
$2 \times 10^6 \mathrm{Mpc}^{-1}$	w = 1	0.0048	0.0113	0.0105
$6 \times 10^{12} { m Mpc}^{-1}$	w = 1/3	0.013	0.016	0.0163
$6 \times 10^{12} \text{ Mpc}^{-1}$	w = 1	0.0048	0.0067	0.006

for comparison, check 1812.11011; for exact experimental bounds, check 1705,05567,1912.01014

Sukannya Bhattacharya (IITM)

10/04/2021 10/19

500

Moduli dominated PBH production: mass range of interest

LIGO Collaboration and B.Carr et. al., 2006.02838

10/04/2021 11/19

1

<ロト <回ト < 回ト <

Moduli dominated PBH production: mass range of interest

LIGO Collaboration and B.Carr et. al., 2006.02838

• Mass range of interest: $M \sim 30 M_{\odot}$.

•
$$\Gamma = \frac{m_{\phi}^3}{2m_P^2}$$
 and $T_{\rm rh} = \left(\frac{90}{8\pi^3 g_*(T_{\rm rh})}\right)^{1/4} \sqrt{\Gamma m_P} \simeq 2.75 MeV \left(\frac{10.66}{g_*(T_{\rm rh})}\right)^{1/4} \left(\frac{m_{\phi}}{100TeV}\right)^{3/2}$.
 $M \propto \frac{1}{H} \propto a^{3(1+w)/2}$

Sukannya Bhattacharya (IITM)

PBH formation: RD vs MD

RD

• Standard deviation of fluctuations is determined in the general relativistic perturbation theory.

•
$$\delta_c = \frac{3(1+w)}{5+3w} \sin^2\left(\frac{\pi\sqrt{w}}{1+3w}\right).$$

• $\beta(M) = \int_{\delta_c}^{\infty} d\delta P(\delta) = \operatorname{erfc}\left(\frac{\delta_c}{\sqrt{2\sigma(M)}}\right).$
• $\psi(M) = 5 \times 10^8 \frac{\beta(M)}{M} \left(\frac{M_{\odot}}{M}\right)^{1/2}$

Sac

< □ ト < □ ト < 三 ト < 三 ト</p>

PBH formation: RD vs MD

RD

 Standard deviation of fluctuations is determined in the general relativistic perturbation theory.

•
$$\delta_c = \frac{3(1+w)}{5+3w} \sin^2\left(\frac{\pi\sqrt{w}}{1+3w}\right).$$

•
$$\beta(M) = \int_{\delta_c}^{\infty} d\delta P(\delta) = \operatorname{erfc}\left(\frac{\delta_c}{\sqrt{2}\sigma(M)}\right).$$

•
$$\psi(M) = 5 \times 10^8 \frac{\beta(M)}{M} \left(\frac{M_{\odot}}{M}\right)^{1/2}$$

EMD

 Standard deviation of fluctuations is determined in the Newtonian cosmology.

•
$$\beta(M) \simeq 0.056\sigma^5(M).$$

•
$$\psi(M) \simeq 8.2 \times 10^{27} \left(\frac{\Gamma}{M_p}\right)^{1/2} \frac{\beta(M)}{M}.$$

< = > < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - <

•
$$M_{\text{max}} \simeq M_{\text{rh}} \sigma_{\text{max}}^{3/2}$$

 $M_{\text{min}} = M_{\text{max}} \left(\frac{a_{\text{md}}}{a_{\text{rh}}}\right)^{3/2}$

Sukannya Bhattacharya (IITM)

3 10/04/2021 12/19

Sac

PBH formation: RD vs MD

RD

 Standard deviation of fluctuations is determined in the general relativistic perturbation theory.

•
$$\delta_c = \frac{3(1+w)}{5+3w} \sin^2\left(\frac{\pi\sqrt{w}}{1+3w}\right).$$

• $\beta(M) = \int_{\delta_c}^{\infty} d\delta P(\delta) = \operatorname{erfc}\left(\frac{\delta_c}{\sqrt{2\sigma(M)}}\right).$
• $\psi(M) = 5 \times 10^8 \frac{\beta(M)}{M} \left(\frac{M_{\odot}}{M}\right)^{1/2}$

• $H_{\rm dom} \simeq m_{\phi} (\phi_0/M_P)^2$.

• Parameters entering from moduli domination: m_{ϕ} and $\phi_0 = M_P/100$.

EMD

 Standard deviation of fluctuations is determined in the Newtonian cosmology.

•
$$\beta(M) \simeq 0.056\sigma^5(M).$$

•
$$\psi(M) \simeq 8.2 \times 10^{27} \left(\frac{\Gamma}{M_p}\right)^{1/2} \frac{\beta(M)}{M}.$$

< = > < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - < - - <

•
$$M_{\text{max}} \simeq M_{\text{rh}} \sigma_{\text{max}}^{3/2}$$

 $M_{\text{min}} = M_{\text{max}} \left(\frac{a_{\text{md}}}{a_{\text{rh}}}\right)^{3/2}$

Mass functions

$$\psi(M) = \begin{cases} 2.6 \times 10^8 \left(\frac{M_{\odot}}{M}\right)^{1/2} \left(\frac{m_{\phi}M_{\rm Pl}}{\phi_0^2}\right)^{1/3} \frac{\beta_{\rm RD}(M)}{M} \,, & M < M_{\rm min} \,, \\ 5.2 \times 10^{26} \left(\frac{m_{\phi}}{M_{\rm Pl}}\right)^{3/2} \frac{\beta_{\rm MD}(M)}{M} \,, & M_{\rm min} \leq M \leq M_{\rm max} \,, \\ 5 \times 10^8 \left(\frac{M_{\odot}}{M}\right)^{1/2} \frac{\beta_{\rm RD}(M)}{M} \,, & M > M_{\rm max} \,. \end{cases}$$

Sukannya Bhattacharya (IITM)

10/04/2021 13/19

1

590

▲□ ▶ ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

Primordial Power spectrum

$$P_{\zeta}(k) = A_s \left(\frac{k}{k_*}\right)^{n_s - 1} + A_p \exp\left[-\frac{(N_k - N_p)^2}{2\sigma_p^2}\right]$$

Sukannya Bhattacharya (IITM)

PBHGW

<ロ > < 回 > < 回 > < 三 > < 三 > < 三 > 三 の < () 10/04/2021 14/19

Primordial Power spectrum

PBHGW

<ロト <回ト < 回ト < в 10/04/2021 14/19

Э

nan

Primordial Power spectrum

• $A_p = 10^{-3}, \sigma_p = 1$, and $k_p = 10^6 \text{ Mpc}^{-1}$.

- The Planck experiment restricts any deviation from scale-invariant spectrum at large scales.
- FIRAS data excludes the upper gray-shaded region between $k = 10^2 10^4 \text{ Mpc}^{-1}$.
- Future experiment PIXIE (dashed gray) could potentially rule out such feature in the primordial power spectrum at small scale.

Maximum PBH mass

• $\Gamma \gtrsim 8 \times 10^{-24}$ GeV, $m_{\phi} \sim 135$ TeV.

- $\bullet\,$ This is value of $M_{\rm max}$ falls in the parameters space of BH mass that is being probed by the LIGO/Virgo.
- \bullet PBHs form only about 4.3% of the DM population, and about 95% of these black holes are above $0.1 M_{\odot}.$

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Sukannya Bhattacharya (IITM)

Stochastic GW Background

- 1st order scalar perturbations are source for 2nd order tensor perturbations.
- Large amplitude of fluctuations required for PBH production can source large tensor perturbations.
- First order scalar transfer functions $\Phi(p,\eta) = \frac{1}{2+(k/p)^{3/2}}$;

• Second order tensor transfer functions $t(k,\eta) = \left(\frac{k(T_1)}{k}\right)^{1/2} \left(\frac{k_{eq}}{k(T_1)}\right) a_{eq}$.

Stochastic GW Background

- 1st order scalar perturbations are source for 2nd order tensor perturbations.
- Large amplitude of fluctuations required for PBH production can source large tensor perturbations.
- First order scalar transfer functions $\Phi(p,\eta) = \frac{1}{2+(k/p)^{3/2}}$;
- Second order tensor transfer functions $t(k,\eta) = \left(\frac{k(T_1)}{k}\right)^{1/2} \left(\frac{k_{eq}}{k(T_1)}\right) a_{eq}$.

Future LISA probe is important.

Present and future PTA probes are important. TtoB: EPTA, NanoGrav, PPTA.

Sukannya Bhattacharya (IITM)

10/04/2021 16/19

nan

Scenarios consistent with NANOGrav 12.5 yr results

• The recent 12.5 year pulsar timing array (PTA) data released by NANOGrav has reported the discovery of a stochastic common-spectrum process with amplitude $A_{\rm CP}$ and slope $\gamma_{\rm CP}$, which can be fitted into a power law in a narrow range of frequencies.[Argournanian et. al., 2009,04496]¹

Scenarios consistent with NANOGrav 12.5 yr results

- The recent 12.5 year pulsar timing array (PTA) data released by NANOGrav has reported the discovery of a stochastic common-spectrum process with amplitude $A_{\rm CP}$ and slope $\gamma_{\rm CP}$, which can be fitted into a power law in a narrow range of frequencies.[Arzoumanian et. al., 2009,04496]¹
- Assuming the NANOGrav signal to be stochastic GW background, we explored the implications for PBH abundance in nonstandard epochs.

1 [Vaskonen et. al., De Luca et. al., Kohri et. al., Domenech et. al.] 🗆 > < 🗇 > < 🖹 > > 🗄 - 🔊 < 🖓

Scenarios consistent with NANOGrav 12.5 yr results

- The recent 12.5 year pulsar timing array (PTA) data released by NANOGrav has reported the discovery of a stochastic common-spectrum process with amplitude $A_{\rm CP}$ and slope $\gamma_{\rm CP}$, which can be fitted into a power law in a narrow range of frequencies.[Arzoumanian et. al., 2009,04496]¹
- Assuming the NANOGrav signal to be stochastic GW background, we explored the implications for PBH abundance in nonstandard epochs.

•
$$A_s(w = 1/3) = 6 \times 10^{-3}$$
, $A_s(w = 1) = 5.5 \times 10^{-4}$ and $A_s(w = 1/9) = 5.1 \times 10^{-3}$ to have $\Omega_{GW,\text{peak}} = 10^{-9}$.

Result: NANOGrav analysis

Sukannya Bhattacharya (IITM)

10/04/2021 18/19

Result: NANOGrav analysis

10/04/2021 18/19

Sac

イロト イロト イヨト イ

Result: NANOGrav analysis

	w = 1/3	w = 1	w = 1/9
Range of k_* in Mpc $^{-1}$	$2 \times 10^{6} - 7 \times 10^{6}$	$2 \times 10^{6} - 7 \times 10^{6}$	$2 \times 10^7 - 7 \times 10^7$
Range of M/M_{\odot} at $k_{*,\min}$	0.2-2	1-10	$10^{-4} - 5 \times 10^{-3}$
Range of M/M_{\odot} at $k_{ m *,max}$	0.01 - 0.33	0.08-2	3×10^{-6} - 3×10^{-4}

Sukannya Bhattacharya (IITM)

10/04/2021 18/19

GW spectrum for Different power spectra

 $A_s = 0.007.$

Sukannya Bhattacharya (IITM)

10/04/2021 19/19

990

イロト イロト イヨト イ