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Introduction

Observed high degree of spatial homogeneity and isotropy at large scales
of universe → early universe underwent a phase of rapid accelerated
expansion (the cosmic inflation). Requires exotic matter with negative
pressure, called the dark energy/cosmological constant. Inflation also
explains the flatness problem and the non-observed defects like mag-
netic monopoles (e.g. S. Weinberg, Cosmology (2009)).

Some open questions→ Starting from the early inflationary high density
DE, how did we reach its current tiny value? Can quantum effects ex-
plain this? How did the inflation end to begin the radiation dominated,
thermalised era? How did the inflationary cosmological quantum pertur-
bations become classical to develop into the large scale structures we
observe today? Is Λ really vacuum energy density? How did the primor-
dial magnetic field generate?
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Figure: Our Universe – from history to present (source : NASA)



Introduction

Cosmic coincidence problem →Only around±10% mismatch of current
Λ value compared to inflationary one would have changed the evolution
history of the universe dramatically (T. N. Tomaras et al, PLB (1987)). A classical
slow roll potential cannot fully address this, as it lacks any microscopic
description, and there can be large quantum effects as well (e.g. T. Fujita et al,

JCAP (2014)).

The de Sitter spacetime : A maximally symmetric spacetime with a
constant positive curvature, R = 2dΛ/(d − 2) in d-dim. Simplest soln.
with a positive Λ,

ds2 = −dt2 + a2(t)d~x2 = a2(η)(−dη2 + d~x2)

where a = eHt , H =
√

Λ/3 and η = −e−Ht/H, 0 ≤ t < ∞ and −H−1 ≤
η ≤ 0−. An accelerated expansion with const. Hubble rate, H = ȧ/a,
with H−1 being the Hubble or cosmological horizon size. Metric during
inflation often taken to be dS.
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Introduction

Einstein eqn. Gµν = 8πGTµν . General spatially homogeneous and
isotropic cosmological background, ds2 = −dt2+a2(t)

(
dx2 + dy2 + dz2).

Take matter field with energy density ρ(t) and pressure P(t). Friedman
eqns.

ȧ2/a2 = 8πGρ(t)/3 ä/a = −4πG(ρ(t) + 3P(t))/3

ρ > 0 ⇒ expansion spacetime. P > 0 ⇒ ä < 0 → expansion rate
decreases. Accelerated expansion, i.e. ä > 0 only if ρ + 3P is negative
→ negative pressure! Eqn. of state, P = wρ → accelerated expansion
possible only if w < −1/3. For w = −1, ρ/8πG becomes a const.,
called Λ, the cosmological constant.
Any matter field with w < −1/3 is called the dark energy. The simplest
form of it is the cosmological constant, the simplest and phenomenolog-
ically very successful model of DE.
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Massless quantum fields in dS

Dynamical backgrounds such as dS → particle pair creation, save con-
formally invariant field theories prepared initially in the conformal vac-
uum. Massless but non-conformal fields (such as massless minimal
scalar, gravitons) → a created such particle practically has infinite life-
time → indicates enhanced quantum effects as Ht � 1. Any process
containing propagators of such fields as internal lines → large quan-
tum effect at late times, created by long wavelength, super-Hubble or IR
modes→ the secular effect (T. Tanaka & Y. Urakawa, CQG (2013), for vast review).

Massless minimal scalar in dS, ∇µ∇µφ = 0⇒

φ~k (x) =
H(1 + ikη)√

2k3
e−i(kη−~k·~x)
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Massless quantum fields in dS
Initial time, η → −H−1, sub-Hubble modes (k/H � 1)⇒

φ~k (η → −H−1)→ 1√
2k

e−ikη+i~k·~x

⇒ δ-fn. normalisable and similar to that of flat spacetime⇒ field quan-
tisation (The Bunch-Davies vacuum).

However, the modes are not normalisable on hypersurfaces lying in the
future of this initial hypersurface⇒Wightman functions or the Feynman
propagator would break de Sitter invariance. Take
ηµν∂µ

(
ad−2∂ν i∆(x , x)

)
= iδd (x − x ′), where (e.g. T. Brunier et al, CQG (2005)).

i∆(x , x ′) = A(x , x ′) + B(x , x ′) + C(x , x ′)

with (in d = 4− ε)

A(x, x′) =
H2−ε Γ

(
1− ε

2

)
4π2− ε2

1
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Massless quantum fields in dS

where

y(x , x ′) = aa′H2∆x2 = aa′H2
[
−(|η − η′| − iε)2 + |~x − ~x ′|2

]

A simple example of secular effect : compute i∆(x , x ′) in the coincidence
limit,

i∆(x , x) =
H2−ε

22−επ2−ε/2

Γ(2− ε)
Γ(1− ε

2 )

(
1
ε

+ ln a
)

Imagine a quartic self interaction L = −λφ4/4! − δm2φ2/2. One loop
bubble self energy→

−i
[
λ

2
i∆(x, x) + δm2

]
ad
δ

d (x − x′)⇒ δm2
λ = −

λH2−ε

(4π)2−ε/2

Γ(3− ε)

Γ(2− ε/2)ε

However, the self energy grows monotonically as ∼ ln a → after suffi-
cient e-foldings, becomes O(1)→ Non-perturbative effects.
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The secular effect

Consider the 2-loop 〈Tµν〉 : renormalised results (V. Onemli & R. Woodard, CQG
(2002)) :

〈ρ〉λ, ren. =
λH4

27π4

ln2 a +
4

9a3
−
∞∑

n=1

(n + 2) a−n−1

(n + 1)2

 (ln2 a = (ln a)2)

〈P〉λ, ren. = −
λH4

27π4

ln2 a +
2

3
ln a +

∞∑
n=1

(n2 − 4)a−n−1

3(n + 1)2


Large de Sitter breaking backreaction at late times → large screening

of inflationary Λ? End of inflation? Similar loop effects computed for
Yukawa coupling, QED with scalar and gravitons up to two loop (for a re-

view, B. L. Hu, 1812.1185).

A massless minimal scalar with quartic self interaction – such late time
secular logarithms can be resummed to obtain a bounded result, 〈Tµν〉 ∼
O(1) and at late times the dS symmetry is retained via a dynamical gen-
eration of mass, m2

dyn. ∼ λ1/2 for O(N) model (G. Moreau & J. Serreau, PRL (2019);

M. Baugmart & R. Sundrum, 1912.09502).
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The secular effect

Consistent with the IR effective late time stochastic field theory (A. Starobin-

sky et al, PRD (2009)). The dynamically generated mass → interesting predic-
tions in CMB, primordial gravitational waves and non-Gaussianity. Solv-
ing gravitons or gauge field couplings in dS however remains as an open
issue (dS invariant gauge fixing +derivative interactions (e.g. N. Tsamis et al,

2110.08715)).

Quartic potential is positive→ yields positive non-perturbative vev. ⇒
increase in the inflationary Λ-value. For non-positive potentials we may
find a decrease. Knowing the precise non-perturbative shift could be
important (SB, JCAP (2022), SB & N. Joshi, JCAP (2023))

Yukawa interaction and a non-positive potential → non-perturbative 〈φ〉
and the dynamical mass was computed recently (SB & M. Dutta Choudhury, 2308.11384).



The secular effect

Consistent with the IR effective late time stochastic field theory (A. Starobin-

sky et al, PRD (2009)). The dynamically generated mass → interesting predic-
tions in CMB, primordial gravitational waves and non-Gaussianity. Solv-
ing gravitons or gauge field couplings in dS however remains as an open
issue (dS invariant gauge fixing +derivative interactions (e.g. N. Tsamis et al,

2110.08715)).

Quartic potential is positive→ yields positive non-perturbative vev. ⇒
increase in the inflationary Λ-value. For non-positive potentials we may
find a decrease. Knowing the precise non-perturbative shift could be
important (SB, JCAP (2022), SB & N. Joshi, JCAP (2023))

Yukawa interaction and a non-positive potential → non-perturbative 〈φ〉
and the dynamical mass was computed recently (SB & M. Dutta Choudhury, 2308.11384).



The secular effect

Consistent with the IR effective late time stochastic field theory (A. Starobin-

sky et al, PRD (2009)). The dynamically generated mass → interesting predic-
tions in CMB, primordial gravitational waves and non-Gaussianity. Solv-
ing gravitons or gauge field couplings in dS however remains as an open
issue (dS invariant gauge fixing +derivative interactions (e.g. N. Tsamis et al,

2110.08715)).

Quartic potential is positive→ yields positive non-perturbative vev. ⇒
increase in the inflationary Λ-value. For non-positive potentials we may
find a decrease. Knowing the precise non-perturbative shift could be
important (SB, JCAP (2022), SB & N. Joshi, JCAP (2023))

Yukawa interaction and a non-positive potential → non-perturbative 〈φ〉
and the dynamical mass was computed recently (SB & M. Dutta Choudhury, 2308.11384).



The decoherence

Decoherence → process in which the states of an open quantum sys-
tem become entangled (via some interaction) with its surrounding which
leads to the loss of coherence and correlation for the system. Partic-
ularly relevant in the context of interacting QFT’s (e.g., I. Allali & M. Hertzberg,

JCAP (2020) and Refs. therein.) Could be relevant to understand how the early
inflationary perturbations became classical as well as decoherence of
stochastic gravitational waves (e.g., T. Prokopec & G. Rigopoulos, JCAP (2007) and Refs.

therein.).

QFT in time dependent background like dS→ essentially a non-equilibrium
phenomenon (e.g., J. Berges, hep-ph/0409233 for a vast review.). The theory is broken
into two parts→ system + environment. The measure of decoherence is
usually the von Neumann entropy of the system generated at late times.
Most popular approach to study this is the Feynman-Vernon influence
functional or master equation approach → one integrates out the envi-
ronment field to construct an effective action (e.g., D. Boyanovsky, PRD (2018)).
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The correlator approach to decoherence

Despite its popularity and successes, the influence functional approach
has several shortcomings→ once the surrounding is traced out, there is
no unitary evolution. There is always problem with renormalisability if the
surrounding has interactions. For interacting theories, it is very difficult
to treat things non-perturbatively in this approach.

A rather recently proposed approach to compute the von Neumann en-
tropy is based upon the correlation functions instead (J. Koksma et al, PRD (2011),

B. L. Hu, 1812.11851). Precisely, if we know all the correlation functions of sys-
tem and surroundings, we practically know everything about them and
hence there can be no entropy. In practical scenarios however, an ob-
server only measures a few correlation functions for the system. Such
limitation leads to lack of information for the system and hence entropy.
This approach has been applied to zero and finite temp. field theories, in
gravitational wave backgrounds etc. In particular, for two self interacting
scalar field theories in the inflationary dS (P. Friedrich and T. Prokopec, PRD (2019)).
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Entropy and phase space area
Consider ordinary non-relativistic quantum mechanics. Take a system
with position x and conjugate momentum p. We have the uncertainty,
∆x∆p ≥ ~/2.

The ground state of a theory is the most symmetric one→ corresponds
to minimum uncertainty→ take a Gaussian wave function (e.g. a HO)⇒
∆x∆p = ~/2. However, if the ground state is not pure, such minimum
uncertainty will not be satisfied. In general,

〈x2〉〈p2〉 −
1

4
〈[x, p]+〉2 =

~2

4
(pure, Gaussian)

〈x2〉〈p2〉 −
1

4
〈[x, p]+〉2 >

~2

4
(mixed, non− Gaussian)

Put together

〈x2〉〈p2〉 −
1

4
〈[x, p]+〉2 =

~2Ξ2

4

The dimensionless quantity Ξ ≥ 1 is related to the phase space area.
Increase in Ξ opening up of new phase space area due to to interaction.
One then defines the von Neumann entropy,

S =
Ξ + 1

2
ln

Ξ + 1

2
−

Ξ− 1

2
ln

Ξ− 1

2
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The in-in formalism

Dynamical background like dS→ the ‘in’ vacuum evolves to an out vac-
uum→ computing expectation values using the standard in-out S-matrix
elements not meaningful→ one needs the in-in or closed time path for-
malism→

〈ψ|T (B[φ])T (A[φ])|ψ〉 =

∫
Dφ+Dφ−δ(φ+(tf )− φ−(tf ))e

i
∫ tf
ti

√
−gdd x

(
L[φ+]−L[φ− ]

)

×Ψ?[φ−(ti )]B[φ−]A[φ+]Ψ[φ+(ti )]

The two kind of fields φ± introduces four 2-pt functions to deal with : a)

i∆−+(x, x′) = 〈φ−(x)φ+(x′)〉 = (i∆+−(x, x′))? and b) i∆++(x, x′) = θ(t − t′)i∆−+(x, x′) +

θ(t′ − t)i∆+−(x, x′) = (i∆−−(x, x′))?.

For example, the one loop tadpole with a cubic self interaction :

〈φ(x)〉 = −
iβ

2

∫
dd x′a′d i∆(x′, x′)

(
i∆+−(x, x′)− i∆−+(x, x′)

)

⇒ expectation values are causal.



The in-in formalism

Dynamical background like dS→ the ‘in’ vacuum evolves to an out vac-
uum→ computing expectation values using the standard in-out S-matrix
elements not meaningful→ one needs the in-in or closed time path for-
malism→

〈ψ|T (B[φ])T (A[φ])|ψ〉 =

∫
Dφ+Dφ−δ(φ+(tf )− φ−(tf ))e

i
∫ tf
ti

√
−gdd x

(
L[φ+]−L[φ− ]

)

×Ψ?[φ−(ti )]B[φ−]A[φ+]Ψ[φ+(ti )]

The two kind of fields φ± introduces four 2-pt functions to deal with : a)

i∆−+(x, x′) = 〈φ−(x)φ+(x′)〉 = (i∆+−(x, x′))? and b) i∆++(x, x′) = θ(t − t′)i∆−+(x, x′) +

θ(t′ − t)i∆+−(x, x′) = (i∆−−(x, x′))?.

For example, the one loop tadpole with a cubic self interaction :

〈φ(x)〉 = −
iβ

2

∫
dd x′a′d i∆(x′, x′)

(
i∆+−(x, x′)− i∆−+(x, x′)

)

⇒ expectation values are causal.



The in-in formalism

Dynamical background like dS→ the ‘in’ vacuum evolves to an out vac-
uum→ computing expectation values using the standard in-out S-matrix
elements not meaningful→ one needs the in-in or closed time path for-
malism→

〈ψ|T (B[φ])T (A[φ])|ψ〉 =

∫
Dφ+Dφ−δ(φ+(tf )− φ−(tf ))e

i
∫ tf
ti

√
−gdd x

(
L[φ+]−L[φ− ]

)

×Ψ?[φ−(ti )]B[φ−]A[φ+]Ψ[φ+(ti )]

The two kind of fields φ± introduces four 2-pt functions to deal with : a)

i∆−+(x, x′) = 〈φ−(x)φ+(x′)〉 = (i∆+−(x, x′))? and b) i∆++(x, x′) = θ(t − t′)i∆−+(x, x′) +

θ(t′ − t)i∆+−(x, x′) = (i∆−−(x, x′))?.

For example, the one loop tadpole with a cubic self interaction :

〈φ(x)〉 = −
iβ

2

∫
dd x′a′d i∆(x′, x′)

(
i∆+−(x, x′)− i∆−+(x, x′)

)

⇒ expectation values are causal.



The basic setup
The action→

S =

∫
dd xad

(
−

1

2
(∇µφ)(∇µφ)− iψ̄γµ∇µψ − gψ̄ψφ

)

In the mostly positive signature of the metric, the anti-commutation :
[γµ, γν ]+ = −2gµν Id×d .

The scalar Wightman functions in 3-momentum space :

i∆∓±φ (η, η′, k) =
H2

2k3
(1± ikη)(1∓ ikη′)e∓ik(η−η′)

We also need the statistical propagator,

Fφ(x, x′) =
1

2
〈[φ(x), φ(x′)]+〉 =

1

2

(
i∆−+
φ (x, x′) + i∆+−

φ (x, x′)
)

In 3-momentum space,

Fφ(η, η′, k) =
H2

2k3

[
(1 + k2

ηη
′) cos k(η − η′) + k(η − η′) sin k(η − η′)

]
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The basic setup

In a scalar QFT, make an analogy x ≡ φ and p ≡ φ̇. In dS then (P. Friedrich
and T. Prokopec, PRD (2019))

Ξ2
φ(η, k)

4a4
=

[
Fφ(η, η′, k)∂η∂η′Fφ(η, η′, k)−

(
∂η′Fφ(η, η′, k)

)2
]
η=η′

For a free theory, it is easy to check that the von Neuman entropy
vanishes. Once the interaction turned on, the various correlations would
change due to radiative processes. Implies opening up of previously
unaccessed phase space area owing to the interaction→ might give
rise to generation of entropy.
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The 2-loop 2PI effective action
The task is now to compute the correlation functions in the presence
of interactions. We assume that we observe the scalar field correlations
and as the simplest realistic scenario, only the two point correlation func-
tions are measured → basically 1PI self energy diagrams with external
points attached.

Figure: One and two loop self energy diagrams for the scalar with Yukawa interaction.



The 2-loop 2PI effective action

h
h

h hg
g g g

Figure: Contributions to the 2-loop 2PI effective action due to the Yukawa interaction.

We shall restrict our computations to O(g2) only. The second diagram con-
tains tadpoles → no contribution, as they can be renormalised away com-
pletely.

The effective action reads

Γ
2−loop
2PI = Γ(0) + Γ(1) + Γ(2)



The 2-loop 2PI effective action
Explicitly reads

Γ(0)[i∆ss′
φ , iSss′

ψ ] =
∫

dd xdd x′ad
(∑

s,s′=± �xδ
d (x − x′) s δss′

2 i∆s′s
φ (x′, x)

−
∑

s,s′=± i /∇xδ
d (x − x′)sδss′ iSs′s

ψ (x, x′)
)

Γ(1)[i∆ss′
φ , iSss′

ψ ] = − i
2 Tr ln

[
i∆ss
φ (x ; x′)

]
+ iTr ln

[
iSss
ψ (x, x)

]
Γ(2)[i∆ss′

φ , iSss′
ψ ] = −

∑
s,s′=±

iss′g2
2

∫
dd xdd x′ad a′d Tr

[
iSss′
ψ (x, x′)iSs′s

ψ (x′, x)
]
i∆ss′
φ (x, x′)

s, s′ = ±, corresponding to the in-in formalism. Fermion propagators :

iSss′
ψ (x, x′) = −

i(aa′)
1−d

2 Γ
(

d
2

)
2π

d
2

/∆x[
∆x2

ss′ (x, x′)
] d

2

∆x2
±± = −

(
|η−η′| ∓ iε

)2 + |~x−~x ′|2

∆x2
±∓ = −

(
η−η′ ± iε

)2 + |~x−~x ′|2 (ε = 0+)

dS invariant interval :
y2

ss′ = aa′H2∆x2
ss′



The Kadanoff-Baym equation

Kadanoff-Baym equation is the equation of motion satisfied by the correlator
(for a review, J. Berges, hep-ph/0409233). The effective action is varied to obtain the EoM :

�x i∆ss′
φ (x, x′′) =

is δss′δd (x − x′′)

ad
+
∑

s′′=±

∫
dd x′a′d s′′ iMss′′

φ (x, x′)i∆s′′s′
φ (x′, x′′)

where the one loop scalar self energy :

(aa′)d iMss′
φ (x, x′) = i(aa′)d g2Tr

[
iSss′
ψ (x, x′)iSs′s

ψ (x′, x)
]

(no sum on s or s′)

The KB eqn can be solved perturbatively or non-perturbatively. A
non-perturbative analysis requires a proper resummation technique. (for flat

space Yukawa theory, SB, N. Joshi & S. Kaushal, EPJC (2022)). Will attempt this perturbatively for
now.



The scalar self energy

iM++
φ (x, x′) =

ig2Γ2( d
2 )H2d−2

22d−2πd

[
2

(d − 2)2

�

H2
−

2

(d − 2)

][
�

H2

( 4

y++
ln
µ2y++

H2

)
−

4

y++

(
2 ln

µ2y++

H2
− 1
)]

+O
(
d − 4

)
µ is some renormalisation scale. iM−−φ (x , x ′) is just the complex conjugation

of the above. The divergent part:

−
i(aa′)d g2Γ2( d

2 )H2d−2

22d−2πd

[
2

(d − 2)2

�

H2
−

2

(d − 2)

][
2(4π)d/2

(d − 3)(d − 4)Γ
[ d

2 − 1
] (µ

H

)d−4 iδd (x − x′
)

(Ha)d

]
sδss′

The mixed propagators (Wightman functions) do not contain any divergence.
Can be renormalised using a scalar field strength plus a scalar-curvature
non-minimal coupling counterterms. Renormalised result for one loop scalar
self energy :

ig2H6(aa′)d

26π4

[
�

2H2
− 1

][
�

H2

( 4

yss′
ln
µ2yss′

H2

)
−

4

yss′

(
2 ln

µ2yss′

H2
− 1
)]



Self energy in momentum space

iM++
φ (x , x ′) in the spatial momentum space :

− ig2H6

25π2k3

{
1
4

(
�k
H2

)3([
2 +

[
1 + ik|∆η|

](
ln 2|∆η|µ2

ekηη′H2 + iπ
2 − γE

)]
e−ik|∆η|

−
(
1− ik|∆η|

)[
ci
[
2k|∆η|

]
− i si

[
2k|∆η|

]]
e+ik|∆η|

)

−
(

�k
H2

)2([
2 +

[
1 + ik|∆η|

](
ln |∆η|H2

e2kηη′µ2 + iπ
2 − γE

)]
e−ik|∆η|

−
(
1− ik|∆η|

)[
ci
[
2k|∆η|

]
− i si

[
2k|∆η|

]]
e+ik|∆η|

)

+
�k
H2

([
2 +

[
1 + ik|∆η|

](
ln |∆η|H2

e
9
2 kηη′µ2

+ iπ
2 − γE

)]
e−ik|∆η|

−
(
1− ik|∆η|

)[
ci
[
2k|∆η|

]
− i si

[
2k|∆η|

]]
e+ik|∆η|

)
+ 3

[[
1 + ik|∆η|

]
e−ik|∆η|

]}

where k = |~k|, ∆η = η − η′.



The IR limit of the self energy

We are interested in the late time, super-Hubble limit of the self energy.
Will look for long wavelength, or IR effective correlations when
k |∆η| � 1,

iM++
φ,ren(η, η′, k)k|∆η|�1 ≈

ig2H6

25π2k3

(
1

4

(
�k

H2

)3

−
(

�k

H2

)2

+
�k

H2

)(
ln

H2k2ηη′

µ2
+ 2ik|∆η|

)

The IR limit of the other self energies, iM++, iM+− and iM−+ can be
computed in a similarly. Also note that

Fφ(x, x′) = 〈[φ(x), φ(x′)]+〉 =
1

2

(
i∆−+
φ (x, x′) + i∆+−

φ (x, x′)
)

Make appropriate linear combinations of KB eqn + plug in the self
energies→



The von Neuman entropy

The leading and next to the leading behaviour of the statistical
propagator in the late time IR :

Fφ(η, η′, k)k|∆η|�1|1 loop

≈
g2H2

768π2k3

[
ln
ηH2k2η′

µ2

((
η

4k4 + 2η2k2 + 4
)

ln
ηH2k2η′

µ2
− 4

(
η

2k2 + 6
))

+ 4
(
η

2k2 + 6
)

ln

(
−
ηHk2

µ2

)
−
(
η

4k4 + 2η2k2 + 4
)

ln2
(
−
ηHk2

µ2

)]
+ Ffree(η, η′, k)

Yields the change in the phase space area at late times :

δ

 Ξ2
φ

4a4

 ≈ g2H4
(
η2k2 ln η

2H2k2

µ2

(
η2k2 ln η

2H2k2

µ2 − 4
)

+ 2η2k2 + 2
)

384π2η2k6
≈

g2H6a6

48π2k6
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The von Neuman entropy

The von-Neumann entropy generated can be computed using this one loop
change in the phase space area. At tree level it is vanishing.
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Summary and outlook

Computed the one loop generation of von Neumann entropy generation
for a massless, minimally coupled scalar in the inflationary dS spacetime
using the correlator approach (SB, N. Joshi, 2307.13443).

This is a perturbative result only, and does not incorporate the non-
perturbative secular effect. At one loop, the scalar self energy graph
only contains a closed fermion loop. Secular effect should begin at two
loop → resummation of non-local self energy? Resummation of the lo-
cal self energy can be expressed in terms of the dynamically generated
mass at late times. For a scalar self interaction, it vanishes at late times
(A. Youssef & D. Kreimer PRD (2014); SB, N. Joshi & K. Roy, 2310.19436).

Inclusion of gravitons? q r s t u x
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