PBH and ISGWB from USR model of inflation with different reheating histories

(Based on JCAP01(2020)037 and arxiv: 2009.10424)

Nilanjandev Bhaumik

With Rajeev kumar Jain

Weekly cosmology meeting, IIT Madras

May 8, 2021

IISc Bangalore

Primordial Black Holes from USR models as CDM

Induced Stochastic GW Background (ISGWB)

Lowest Mass PBHs for USR models

Effects of reheating

Summary

Primordial Black Holes from USR models as CDM

Primordial Black Holes as CDM and constraints

Inflation to form PBHs

Conditions on curvature perturbation

- \mathcal{R} ~ 0.1 ; $P_{\mathcal{R}}$ ~ 10⁻² at PBH scale (δ_c ~ w)
- \mathcal{R} ~ 0.0001 ; $P_{\mathcal{R}}$ ~ 2.25 imes 10⁻⁹ at CMB Scale

Inflationary model

Behaviour in different regimes

- Large field limit : $V(x) \simeq \frac{V_0 c}{d^2} x^2$
- Small field limit : $V(x) \simeq V_0 a x^2$

Bhaumik, Jain 2019

Inflection point model Potential

- $V'(x_0) = 0$
- $V''(x_0) = 0$
- $V'''(x_0) \neq 0$

Chosen Single field Potential of our Model

$$V(x) = V_0 \frac{ax^2 + bx^4 + cx^6}{(1 + dx^2)^2}$$

Dynamics of inflation in our model

Friedmann equations

•
$$\frac{d^2\phi}{dN^2} + (3-\epsilon)\frac{d\phi}{dN} + \frac{1}{H^2}V'(\phi) = 0$$

•
$$\frac{dH}{dN} = -\frac{H}{2M_{\rm Pl}^2} \left(\frac{d\phi}{dN}\right)^2$$
,

Slow Roll Phase

•
$$\frac{d\phi}{dN} + \frac{1}{3H^2}V'(\phi) \simeq 0$$

$$\phi(N) \simeq \phi_i - \sqrt{2\epsilon_v} M_{\rm Pl}(N - N_i)$$

Ultra Slow Roll Phase

•
$$\frac{d^2\phi}{dN^2} + 3\frac{d\phi}{dN} \simeq 0$$

 $\frac{d\phi(N)}{dN} \sim \exp\left[-3(N-N_i)\right]$

14 12 10 θ 10 20 40 50 60 30 0 Ν

 $\epsilon =$ First Hubble slow Roll parameter

Scalar Power Spectra

Mukhanov sasaki equations

•
$$\mathcal{R}_k'' + 2\left(\frac{z'}{z}\right)\mathcal{R}_k' + k^2\mathcal{R}_k = 0; \quad z = a\dot{\phi}/H = a\phi_N$$

• $P_{\mathcal{R}} = \frac{k^3}{2\pi^2} |\mathcal{R}_k|^2$ $\mathcal{R} =$ Comoving curvature perturbation

Growing and Decaying mode

• $\mathcal{R}_k(\tau) \simeq C_1 + C_2 \int \frac{d\tau}{z^2}$

Ultra Slow Roll and need of numerical Study

•
$$\frac{z'}{z} = aH(1+\epsilon-\eta)$$

PBH mass fraction and uncertainties

Uncertainties in the computation of mass fraction

- Peaks theory and Press Schechter : Press Schechter
- Critical density contrast $\delta_c = .414$
- The window Function

$$W(k,R) = exp\left(-rac{k^2R^2}{2}
ight)$$

Scalar power spectra

PBH mass fraction

Scalar index and tensor to scalar ratio

Induced Stochastic GW Background (ISGWB)

Induced Stochastic GW Background (ISGWB)

$$h_{\mathbf{k}}^{\prime\prime}(\tau) + 2\mathcal{H}h_{\mathbf{k}}^{\prime}(\tau) + k^{2}h_{\mathbf{k}}(\tau) = 4S_{\mathbf{k}}(\tau)$$

$$\Omega_{\rm GW}(\tau,k) = \frac{1}{6} \left(\frac{k}{\mathcal{H}}\right)^2 \int_0^\infty \mathrm{d}v \int_{|1-v|}^{1+v} \mathrm{d}u \left(\frac{4v^2 - (1+v^2 - u^2)^2}{4uv}\right)^2$$

$$\times \overline{I_{\mathrm{RD}}^2(v, u, x)} \mathcal{P}_{\mathcal{R}}(kv) \mathcal{P}_{\mathcal{R}}(ku)$$

$$I_{RD}(u,v,x) = \int_0^x d\bar{x} \frac{a(\bar{x})}{a(x)} f(u,v,\bar{x}) k G(\bar{x},x)$$

ISGWB from our model

Bhaumik, Jain 2020

Lowest Mass PBHs for USR models

Lowest Mass PBHs for USR models (with instantaneous transition to SR)

Limits on efold number * Assuming $|\eta| \le 1$ in SR: $N_{end} - N_{peak} \ge 10.4$ * $N_{end} - N_{pivot} \le 58.92 + \frac{ln(\epsilon)}{4}$ (agrees with Liddle,Leach 2003) * $N_{peak} - N_{pivot} \ge 47.41$

 $N \rightarrow k \rightarrow M_{PBH}, f_{SGWB}$

 $\mathbf{M}_{PBH} \geq 6.14 \times 10^{-23} M_{\odot}$

 $\mathbf{f}_{SGWB} \leq 2.91 \times 10^2 Hz$

[Bhaumik, Jain 2020]

Non-instantaneous transition to SR

Smooth transition to SR: Potential: $V(x) = b_0 + b_1(\phi - \phi_0) + b_2(\phi - \phi_0)^2$ 2nd Slow Roll parameter: $\eta = \epsilon - \phi_{NN}/\phi_N = \eta(N, b_6)$

Minimum efold interval: $N_{end} - N_{peak} = \Delta N_{transition} + \Delta N_{SR} \ge 10.58$

Effects on the slope of SGWB peak

Slope in red tilted regimes

- $P_{\zeta} \sim k^{-\gamma}
 ightarrow \Omega_{SGWB} \sim f^{-2\gamma}$ ($\gamma \leq$ 4.0) [Xu et al, Phys.Rev.D 2020]
- $N_{end} N_{peak} \ge 10.4 \rightarrow \gamma \le 2.0$
- Maximum slope of SGWB \leq 4.0 .

Effects of reheating

Effects of reheating

We assume reheating phase with a constant equation of state w_{reh} , and duration N_{reh} .

$$N_e - N_p = ln\left(rac{\kappa_e}{k_p}
ight) = 58.92 + rac{1}{4}ln(\epsilon) - rac{1}{4}N_{
m reh}(1 - 3w_{
m reh})$$

Effects of reheating on lowest mass limit

Non-instantaneous reheating history

- $N_{peak} N_{pivot} \simeq 47.41 \frac{1}{4}N_{reh}(1 3w_{reh})$
- $M_{PBH} \ge 6.14 \times 10^{-23} e^{\frac{1}{2}N_{reh}(1-3w_{reh})} M_{\odot}$
- $f_{SGWB} \le 2.91 \times 10^2 e^{-\frac{1}{4}N_{reh}(1-3w_{reh})} Hz.$

Matter dominated reheating

- (w=0, $N_{reh} = 10$) :
 - $M_{PBH} \ge 9.09 \times 10^{-21} M_{\odot}$
 - $f_{SGWB} \leq 23.94 Hz$.

Effects of reheating on lowest mass limit

Non-instantaneous reheating history

- $N_{peak} N_{pivot} \simeq 47.41 \frac{1}{4}N_{reh}(1 3w_{reh})$
- $M_{PBH} \ge 6.14 \times 10^{-23} e^{rac{1}{2}N_{reh}(1-3w_{reh})} M_{\odot}$
- $f_{SGWB} \le 2.91 \times 10^2 e^{-\frac{1}{4}N_{reh}(1-3w_{reh})} Hz.$

Matter dominated reheating

- (w=0, $N_{reh} = 10$) :
 - $M_{PBH} \ge 9.09 \times 10^{-21} M_{\odot}$
 - $f_{SGWB} \leq 23.94 Hz$.

Power Spectra

Mass fraction

Contour plot for mass fraction

Effects of reheating on ISGWB

Dependence on kernel I(u,v,x)

$$\Omega_{\rm GW}(\tau,k) = \frac{1}{6} \left(\frac{k}{\mathcal{H}}\right)^2 \int_0^\infty \mathrm{d}v \int_{|1-v|}^{1+v} \mathrm{d}u \left(\frac{4v^2 - (1+v^2 - u^2)^2}{4uv}\right)^2$$

 $\times \overline{I_{\mathrm{MD+RD}}^{2}(v,u,x)} \mathcal{P}_{\mathcal{R}}(kv) \mathcal{P}_{\mathcal{R}}(ku)$

$$I(u,v,x,x_r) \simeq I_{RD}(u,v,x,x_r) = \int_{x_r}^x d\bar{x} \frac{a(\bar{x})}{a(x)} f(u,v,\bar{x},x_r) k G(\bar{x},x)$$

(Inomata, Phys. Rev. D (2019))

$$f(u, v, \bar{x}, x_r) = \frac{4}{9} \left[(\bar{x} - x_r/2) \partial_{\bar{x}} \mathcal{T}(u\bar{x}, ux_r) ((\bar{x} - x_r/2) \partial_{\bar{x}} \mathcal{T}(v\bar{x}, vx_r) + \mathcal{T}(v\bar{x}, vx_r)) + \mathcal{T}(u\bar{x}, ux_r) ((\bar{x} - x_r/2) \partial_{\bar{x}} \mathcal{T}(v\bar{x}, vx_r) + 3\mathcal{T}(v\bar{x}, vx_r)) \right]_{27/2}$$

Effects of eMD on the transfer function

The scalar transfer function in RD

$$\mathcal{T}_{k}^{\prime\prime}(\eta) + 4\mathcal{H}\mathcal{T}_{k}^{\prime}(\eta) + \frac{k^{2}}{3}\mathcal{T}_{k}(\eta) = 0$$
(2)

Kernel I(u,v,x,x_r)

Different oscillating terms

$$\mathcal{I}(u, v, x, x_r) = I(u, v, x, x_r) \times (x - x_r/2)$$

 $\mathcal{I}(u, v, x, x_r) = \mathcal{I}_s(u, v, x, x_r) \sin(x) + \mathcal{I}_c(u, v, x, x_r) \cos(x) + 4 \text{ other terms}$

SGWB for different reheating histories

SGWB for different power spectras, same reheating histories

Summary

Summary of Results

- It is possible to produce PBHs in different mass ranges, and ISGWB in different frequncy bands in these class of models.
- An upper mass limit comes from *n_s* problem.
- Also there is lower mass limit (and an upper limit on f_{SGWB}) for USR models which has no phase of $\eta \leq -1.0$.
- For non-instantaneous reheating history, the lower mass bound gets even stronger.
- Even for monochromatic case, a matter dominated reheating phase results in higher PBH mass range with more abundant PBH formation, lower frequency range for primary ISGWB peak, along with a second ISGWB peak in very high frequency.

(Based on JCAP01(2020)037 and arXiv:2009.10424)

Summary of Results

- It is possible to produce PBHs in different mass ranges, and ISGWB in different frequncy bands in these class of models.
- An upper mass limit comes from *n_s* problem.
- Also there is lower mass limit (and an upper limit on f_{SGWB}) for USR models which has no phase of $\eta \leq -1.0$.
- For non-instantaneous reheating history, the lower mass bound gets even stronger.
- Even for monochromatic case, a matter dominated reheating phase results in higher PBH mass range with more abundant PBH formation, lower frequency range for primary ISGWB peak, along with a second ISGWB peak in very high frequency.

(Based on JCAP01(2020)037 and arXiv:2009.10424)

Thank you

Generation of Primordial Black Holes

- Different Classes of generation mechanism
- PBH from scalar perturbation of inflation
 - Radiation dominated epoch
 - Matter dominated epoch
 - Reheating epoch

We shall deal with PBH formed in radiation dominated epoch, and study the effects of non-instantaneous reheating phase.

Choice of initial scale factor

Steps :

- Choose *a*_{0*i*}
- Choose inflection point
- Scale the field for optimized 1/4 efold Number
 - Normalize $P_{\mathcal{R}}$ at k_p
 - Calculate *a*_{0*c*} from the model
 - Rerun loop with
 - new *a*_{0*i*} 36 / 44

For Non-instantaneous reheating :

$$\frac{a_i}{a_0} = \left(\frac{g_{*,0}}{g_{*,r}}\right)^{1/3} \frac{T_{\gamma}}{T_r} e^{-N-N_{reh}},$$

$$T_r = \left(\frac{90}{\pi^2 g_{*,r}}\right)^{1/4} \left(H_e^2 M_{\rm Pl}^2 e^{-3N_{reh}(1+w_{reh})}\right)$$

Requirement while scanning the parameter space:

- 1. Finite Number of Efolds
- 2. The Fixed PBH Mass Range

 $\phi = x * \nu$

Scaling of the field

- 1. Does not harm the inflection point condition
- 3. It effects duration of USR phase most .
- 4. Changing only ν we get desired efold requirement

Computation of numerical power spectra

- Background evolution
- Sub horizon condition :
 - Bunch-Davies vacuum conditions $\mathcal{R}_k = \frac{1}{\sqrt{2k}} \frac{e^{-ik\tau}}{z}, \qquad h_k = \frac{1}{\sqrt{2k}} \frac{e^{-ik\tau}}{a}.$
- Evolve the perturbation along with back ground evolution
- Obtain Power spectra after:
 - Super horizon condition satisfies: $(k/aH \sim 10^{-3})$
 - Decaying mode dies

Computation of Mass function

Press Schechter Formalism

(Radiation dominated Epoch w = 1/3 $R = 1/k = (aH)^{-1}$)

$$\sigma_{\delta}^{2}(R) = \frac{16}{81} \int \frac{dk}{k} (kR)^{4} P_{\mathcal{R}}(k) W^{2}(k, R) \qquad (2)$$

$$\beta_{f}(M) = \frac{1}{2} \operatorname{erfc} \left(\frac{\delta_{c}}{\sqrt{2} \sigma_{\delta}(M(R))} \right) \qquad (3)$$

$$M(R_{f}) = 4\pi \gamma M_{\mathrm{Pl}}^{2} \left(\frac{a_{eq}}{R_{eq}} \right) R_{f}^{2}$$

$$\beta_{eq}(M) = \beta_{f}(M) \left(\frac{a_{eq}}{a_{f}} \right) = \beta_{f}(M) \left(\frac{R_{eq}}{R_{f}} \right)$$

$$f_{PBH} = \frac{\beta_{eq}(M)}{\Omega_{DM}(M)}$$

Total efolds

In radiation dominated universe, $a \propto t^{1/2}$, $H \propto t^{-1}$ and $k = aH \propto t^{-1/2} \propto H^{1/2}$. As $\rho = 3H^2 M_{pl}^2$, $k = aH \propto \rho^{1/4}$.

$$\frac{k}{k_{eq}} = \left(\frac{\rho}{\rho_{r,eq}}\right)^{1/4} \\ \rho_{r,eq} = \Omega_r (z_{eq} + 1)^4 \rho_{critical} = \Omega_r (z_{eq} + 1)^4 (3H_{present}^2 M_{pl}^2)$$

$$\begin{aligned} H_e &= H_{ri} = \left(P_{\zeta}(k) 8\pi^2 M_{Pl}^2 \epsilon \right)^{1/2} \\ \rho_e &= 3H_e^2 M_{pl}^2 = 8\pi^2 \left(P_{\zeta}(k) M_{Pl}^2 \epsilon \right) \\ k_{ri} &= \frac{k_{eq}}{(z_{eq}+1)} \left(\frac{P_{\zeta}(k) 8\pi^2 \epsilon}{\Omega_r H_{present}^2} \right)^{1/4} \end{aligned}$$

$$k_{ri} = 1.94 imes 10^{24} (\epsilon)^{1/4} Mpc^{-1}$$

 $N_e - N_p = ln\left(rac{k_{ri}}{k_p}
ight) = 58.92 + rac{1}{4} ln(\epsilon)$

Transfer function in RD with eMD

Transfer function in RD in presence of an eMD

$$\mathcal{T}(x, x_r) = \frac{3\sqrt{3} \left[A(x_r) j_1\left(\frac{x - x_r/2}{\sqrt{3}}\right) + B(x_r) y_1\left(\frac{x - x_r/2}{\sqrt{3}}\right) \right]}{x - x_r/2}$$

$$A(x_r) = \frac{x_r}{2\sqrt{3}} \sin\left(\frac{x_r}{2\sqrt{3}}\right) - \frac{1}{36}(x_r^2 - 36)\cos\left(\frac{x_r}{2\sqrt{3}}\right)$$

$$B(x_r) = -\frac{1}{36}(x_r^2 - 36)\sin\left(\frac{x_r}{2\sqrt{3}}\right) - \frac{x_r}{2\sqrt{3}}\cos\left(\frac{x_r}{2\sqrt{3}}\right)$$

Generation of PBHs in radiation dominated era

Assumptions of Instantaneous collapse

- Spherical Collapse
- $M_{PBH}(R) \simeq M_H$

Perturbation to density

contrast $\delta(k,t) \simeq \frac{2(w+1)}{(3w+5)} \left(\frac{k}{aH}\right)^2 \mathcal{R}_k$

Conditions on curvature perturbation

- \mathcal{R} ~ 0.1 ; $P_{\mathcal{R}}$ ~ 10⁻² at PBH scale (δ_c ~ w)
- \mathcal{R} ~.0001 ; $\mathcal{P}_{\mathcal{R}}$ ~ 2.25 × 10⁻⁹ at CMB Scale

Steepest Possible Growth

Effects of reheating

We assume reheating phase with a constant equation of state w_{reh} , and duration N_{reh} .

Remapping of scales :

$$H_{ri} = H_{e}e^{-\frac{3}{2}N_{reh}(1+w_{reh})}$$

$$k_{ri} = \frac{k_{eq}}{\sqrt{H_{eq}}}H_{e}^{1/2}e^{-\frac{3}{4}N_{reh}(1+w_{reh})}$$

$$\frac{k_{e}}{k_{ri}} = \frac{a_{e}H_{e}}{a_{ri}H_{ri}} = e^{-N_{reh}+\frac{3}{2}N_{reh}(1+w_{reh})}$$

$$k_{e} = \frac{k_{eq}}{\sqrt{H_{eq}}}H_{e}^{1/2}e^{-N_{reh}(1-3w_{reh})/4}$$

$$= k_{no-reheating} \times e^{-\frac{1}{4}N_{reh}(1-3w_{reh})}$$

$$h_{a} = \frac{h_{e}}{h_{a}} = \frac{h_{e}}{h_{e}} = \frac{h_{e}}{h_$$

$$N_e - N_p = \ln\left(\frac{k_e}{k_p}\right) = 58.92 + \frac{1}{4}\ln(\epsilon) - \frac{1}{4}N_{\text{reh}}(1 - 3w_{\text{reh}})$$

$$_{44/44}$$