

OUTLINE

- Cosmological paradigm and H_{0} tension
> Negative cosmological constant
> Observational outlook
$>21 \mathrm{~cm}$ signal from post-reionization epoch
> Constraints
> Summary

COSMOLOGICAL PARADIGM

Three unknown pillars:

> Inflation: an early stage of accelerated expansion which produces the initial, tiny, density perturbations, needed for structure formation.
> Dark Matter: a clustering matter component to facilitate structure
 formation.
> Dark Energy: an energy component to explain late time cosmic acceleration.

COSMOLOGICAL PARADIGM

Three unknown pillars:
> Inflation: an early stage of accelerated expansion which produces the initial, tiny, density perturbations, needed for structure formation.
> Dark Matter: a clustering matter component to facilitate structure formation.
> Dark Energy: an energy component to explain late time cosmic acceleration.

Specific solutions for $\Lambda \mathrm{CDM}$:
> Inflation is given by a single, minimally coupled, slow-rolling scalar field;

- Dark Matter is a pressureless fluid made of cold, i.e., with low momentum, and collisionless particles;
- Dark Energy is a cosmological constant term.

Space is homogenous and isotropic:

$$
d s^{2}=c^{2} d t^{2}-a^{2}(t)\left[\frac{d r^{2}}{1-K r^{2}}+r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)\right]
$$

Einstein's field equation:

$$
\begin{gathered}
R_{\mu \nu}-\frac{1}{2} g_{\mu \nu} R+\Lambda \mathrm{g}_{\mu \nu}=\frac{8 \pi G}{c^{4}} T_{\mu \nu} \\
\left(\frac{\dot{a}}{a}\right)^{2} \equiv H^{2}(a)=\frac{8 \pi G}{c^{4}}\left(\sum_{i} \rho_{i}+\Lambda\right) \quad(00-\text { Friedmann Eq) } \\
\frac{\ddot{a}}{a}=\frac{-4 \pi G}{3}\left(\sum_{i} \rho_{i}+3 p_{i}\right)+\frac{\Lambda}{3} \quad \text { (ij - Constraints of motion) }
\end{gathered}
$$

Energy conservation: $\nabla_{\mu} T_{0}^{\mu}=0$ gives

$$
a^{-3} \frac{\partial\left(\rho a^{3}\right)}{\partial t}=-3\left(\frac{\dot{a}}{a}\right) p \quad ; \rho_{i}(a) \propto a^{-3\left(1+w_{i}\right)}
$$

Hubble expansion rate:

$$
\begin{gathered}
H^{2}(z)=H_{0}^{2}\left[\Omega_{m 0}(1+z)^{3}+\Omega_{r 0}(1+z)^{4}+\Omega_{d e 0}(1+z)^{3\left(1+w_{d e}\right)}\right] \\
q_{0}=\frac{1}{2}\left[\Omega_{m 0}+(1+3 w) \Omega_{\Lambda 0}\right], w_{i}=p_{i} / \rho_{i}
\end{gathered}
$$

$>$ In 90's $H_{0}=60-80 \mathrm{~km} / \mathrm{s} / \mathrm{MPc}, \Omega_{m 0}=1, \Omega_{\Lambda 0}=0, q_{0}>0\left(\Omega_{m 0} / 2\right)$

Distance modulus: $\mu=m-M=H_{0}\left(\frac{d_{L}(z)}{10 M p c}\right)+25$
Luminosity distance: $d_{L}(z)=\frac{c(1+z)}{H_{0}} \int_{0}^{z} \frac{d z}{E(z)}, E(z)=\frac{H(z)}{H_{0}}$

(Credit: Robert P Kirshner 1999) $\Omega_{m 0}=0.3, \Omega_{\Lambda 0}=0.7$
$q_{0}<0$ accelerating
Assuming $w=-1$

SDSS LRG (credit: Eisenstein et.al 2005)

Everything seems so good so far !!!

WARNING !!!

With the improvement of the number and the accuracy of the observations, deviations from Λ CDM may be expected.

And, actually, discrepancies among key cosmological parameters of the models have emerged with different statistical significance.
While some proportion of these discrepancies may have a systematic origin, their persistence across probes should require multiple and unrelated errors, strongly hinting at cracks in the standard cosmological scenario and the necessity of new physics.

These tensions can indicate a failure of the concordance Λ CDM model.

HOTENSION ($\geq 5 \sigma$)

> Planck measurement of H_{0} is based on early universe physics.
$H_{0}=67.5 \pm 0.5 \mathrm{~km} / \mathrm{s} / \mathrm{Mpc}$
> SHoES measurement of H_{0} is based on Astrophysics of stars.

$$
H_{0}=73.7 \pm 1.04 \mathrm{~km} / \mathrm{s} / \mathrm{Mpc}
$$

(credit: LIGO)

SHOES MEASUREMENT OF H_{0}

HOW PLANCK MEASURES H_{0} ??

Comoving angular diameter distance $\left(D_{A}(z)\right)$

HOW PLANCK MEASURES H_{0} ?

> Step 1: Calculate Sound horizon

$$
r_{s}\left(z_{r}\right)=\int_{0}^{a_{r}} \frac{c_{s} d a}{a^{2} H(a)} ; c_{s}(a)=c / \sqrt{3\left(1+3 \rho_{b} / 4 \rho_{r}\right)}
$$

> Step 2: Angular size of the sound horizon from the peak spacing in CMB

$$
\theta=\frac{\pi}{\Delta \ell}
$$

> Step 3: Calculate the angular diameter distance for sound horizon

$$
D_{A}=\frac{r_{s}}{\theta}=\frac{1}{1+z_{r}} \int_{0}^{z_{r}} \frac{d z}{H(z)}
$$

> Extrapolate $H(z)$ to $z=0$ and get H_{0} (Here Planck uses $\Lambda \mathrm{CDM}$)

Crowded No More: The Accuracy of the Hubble Constant Tested with High Resolution Observations of Cepheids by JWST

Adam G. Riess,,${ }^{1,2}$ Gagandeep S. Anand, ${ }^{1}$ Wenlong Yuan, ${ }^{2}$ Stefano Casertano, ${ }^{1}$ Andrew Dolphin, ${ }^{3}$ Lucas M. Macri, ${ }^{4}$ Louise Breuval, ${ }^{2}$ Dan Scolnic, ${ }^{5}$ Marshall Perrin, ${ }^{1}$ and Richard I. Anderson ${ }^{6}$

${ }^{1}$ Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA
${ }^{2}$ Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218, USA
${ }^{3}$ Raytheon, 1151 E. Hermans Road, Tucson, AZ 85706
${ }^{4}$ NSF's NOIRLab, 950 N Cherry Ave, Tucson, AZ 85719, USA
${ }^{5}$ Department of Physics, Duke University, Durham, NC 27708, USA
${ }^{6}$ Institute of Physics, Laboratory of Astrophysics, École Polytechnique Fédérale de Lausanne (EPFL),
Observatoire de Sauverny, 1290 Versoix, Switzerland

ABSTRACT

High-resolution JWST observations can test confusion-limited $H S T$ observations for a photometric bias that could affect extragalactic Cepheids and the determination of the Hubble constant. We present $J W S T$ NIRCAM observations in two epochs and three filters of >320 Cepheids in NGC 4258 (which has a 1.5% maser-based geometric distance) and in NGC 5584 (host of SN Ia 2007af), near the median distance of the SH0ES HST SN Ia host sample and with the best leverage among them to detect such a bias. JWST provides far superior source separation from line-of-sight companions than HST in the NIR to largely negate confusion or crowding noise at these wavelengths, where extinction is minimal. The result is a remarkable $>2.5 \times$ reduction in the dispersion of the Cepheid $P-L$ relations, from 0.45 to 0.17 mag , improving individual Cepheid precision from 20% to 7%. Two-epoch photometry confirmed identifications, tested $J W S T$ photometric stability, and constrained Cepheid phases. The $P-L$ relation intercepts are in very good agreement, with differences (JWST-HST) of 0.00 ± 0.03 and $0.02 \pm 0.03 \mathrm{mag}$ for NGC 4258 and NGC 5584, respectively. The difference in the determination of H_{0} between $H S T$ and $J W S T$ from these intercepts is $0.02 \pm 0.04 \mathrm{mag}$, insensitive to $J W S T$ zeropoints or count-rate non-linearity thanks to error cancellation between rungs. We explore a broad range of

*credit: Di Valentino et al., (2021)

- Cyan vertical band corresponds to SHoES Team and the pink vertical band corresponds to Planck18 team within a Λ CDM scenario.
- The high precision and consistency of the data at both ends present strong challenges to the possible solution space and demands a hypothesis with enough rigor to explain multiple observations whether these invoke new physics, unexpected large-scale structures or multiple, unrelated errors.

POSSIBLE SOLUTION

POSSIBLE SOLUTION (FORMALLY)

DARK ENERGY MODEL WITH NON ZERO VACUA

- Quintessence field* $(\phi)+$ Cosmological constant (Λ)
$>$ i.e $\rho_{D E}=\rho_{\phi}+\Lambda$ with the constraint $\rho_{D E}>0$ (for late time cosmic acceleration)
> EoS: $w_{\phi}(a)=w_{0}+w_{a}(1-a)$ CPL model **Chavellier, Polarski \& Linder
- This can be obtained by expanding $w(a)$ in the Taylor series around $a=1$

$$
w(a)=\left.w\right|_{a=1}+\left.(a-1) \frac{d w}{d a}\right|_{a=1}+\left.\frac{1}{2}(a-1)^{2} \frac{d^{2} w}{d a^{2}}\right|_{a=1}+\mathcal{O}\left[(a-1)^{3}\right]
$$

where w_{0} is the present value i.e $w\left(a_{0}\right)=w_{0}+w_{a}\left(1-a_{0}\right)=w_{0}$ and the value of its

$$
\text { slope } d w(a) / d a=-w_{a} .
$$

- Density evolve: $\rho_{\phi}(a) \propto a^{-3\left(1+w_{0}+w_{a}\right)} \exp ^{3 w_{a} a}$
*According to ancient Greek science it denotes a fifth cosmic element after earth, fire, water \& air. In Latin "fifth element"

QUINTESSENCE

- Quintessence is described by a canonical scalar field ϕ minimally coupled to gravity. A slowly varying field along a potential $V(\phi)$ can lead to the acceleration of the Universe.

$$
S=\int d^{4} \vec{x} \sqrt{-g}\left[\frac{1}{2} M_{p_{l}}^{2} R-\frac{1}{2} g^{\mu \nu} \partial_{\mu} \phi \partial_{\nu} \phi-V(\phi)\right]+S_{m}
$$

$>$ The dark energy EoS is $w_{\phi} \equiv \frac{P_{\phi}}{\rho_{\phi}}=\frac{\dot{\phi}^{2} 2-V(\phi)}{\dot{\phi}^{2} / 2+V(\phi)}$
Slow roll condition: $\dot{\phi}^{2}<V(\phi) \&|\ddot{\phi}|<\left|V_{\phi}\right|$ where $V_{\phi}=d V(\phi) / d \phi$
$>$ define the following dimensionless variables $x=\left(\frac{d \phi}{d N}\right) / \sqrt{6} M_{p l} y=\frac{\sqrt{V}}{\sqrt{6} H M_{p l}}$

$$
, \lambda=-M_{p l} \frac{V_{\phi}}{V}, \Gamma=V \frac{V_{\phi \phi}}{V_{\phi}} \text {,we have: } \Omega_{\phi}=x^{2}+y^{2}, w_{\phi}=\frac{2 x^{2}}{x^{2}+y^{2}}-1 .
$$

> In spatially flat universe, evolution of $H(a)$

$$
\begin{aligned}
\frac{H(a)}{H_{0}}= & \sqrt{\Omega_{m_{0}} a^{-3}+\Omega_{\phi 0} \exp \left[-3 \int_{1}^{a} d a^{\prime} \frac{1+w_{\phi}\left(a^{\prime}\right)}{a^{\prime}}\right]+\Omega_{\Lambda 0}} \\
& \text { with } \Omega_{m 0}+\Omega_{\phi 0}+\Omega_{\Lambda}=1(\mathrm{CPL}-\Lambda \mathrm{CDM})
\end{aligned}
$$

This is same as adding a non-zero cosmological constant for the scalar field potential

$$
V(\phi)=F(\phi)+V_{0}
$$

V_{0} can be positive (dS) or negative (AdS)

OBSERVATIONAL OUTLOOK

$\theta_{s}(z)=\frac{s\left(z_{d}\right)}{(1+z) D_{A}(z)} \quad \delta z_{s}=\frac{s\left(z_{d}\right) H(z)}{c}$

- Related effective distance: $D_{V}(z)=\left[(1+z)^{2} D_{A}^{2}(z) \frac{c z}{H(z)}\right]^{1 / 3} \quad\left({ }^{* *}\right.$ Eisenstein et. al. 2005)

Define a dimensionless quantity: $r_{B A O}(z)=\frac{r_{s}}{D_{V}(z)}$
>2 df galaxy survey: $r_{B A O}(z=0.2)=0.1980 \pm 0.0058$ and

$$
r_{B A O}(z=0.35)=0.1094 \pm 0.0033 \text { (Percival et. al. 2007) }
$$

> BOSS (SDSS III) CMASS_LRG: $r_{B A O}(z=0.57)=0.07315 \pm 0.002$ (Anderson et. al. 2012)
$r_{B A O}(z=0.57)=0.07315 \pm 0.002$ (Anderson et. al. 2012)

Task!!!

> Find out what is the possible combinations for (w_{0}, Ω_{Λ}) that give identical $r_{B A O}$ in Λ CDM framework but with $H_{0}=72$ km/s/Mpc
> For simplicity we kept $w_{a}=0$ and fix $\Omega_{m 0}=0.311$ measured by Planck.
—observation data, $\cdots \cdot \cdot \Lambda$ CDM

$z=0.35$

$$
z=0.2
$$

Same but for different redshifts

21CM SIGNAL

- In H -atom electron and proton normally spin in the same direction.
- Occasionally, electron flips spin to other direction (happens only about once every 100million years for each atom)
- Emit radiation of $1420 \mathrm{MHz}(\lambda=21 \mathrm{~cm})$
$>\frac{n_{1}}{n_{0}}=\frac{g_{1}}{g_{0}} \exp ^{T_{*} / T_{s}} ; T_{*}=h \nu_{e} / k_{B}=0.68 K$
> predicted: Henrik van de Hulst 1944 detected in 1951.

21CM SIGNAL

21CM SIGNAL FROM POST-REIONIZATION EPOCH

- CMB photons free streaming from the LSS undergoes a dip in its brightness temperature on passing through a HI cloud depending on its optical depth and spin temperature.
$>\delta T_{b}(\hat{n}, z)=\frac{\left(T_{s}-T_{\gamma}\right) \tau}{T_{\gamma}}$

$$
=\left(1-\frac{T_{\gamma}}{T_{s}}\right)\left(\frac{\rho_{H I}}{\bar{\rho}_{H}}\right)\left(1-\frac{1}{a H} \frac{\partial V}{\partial r}\right)
$$

**Fig. credit: S Bharadwaj \& SK. Saiyad Ali, (2004)

21CM POWER SPECTRUM

> The 21 cm power spectrum of this excess brightness temperature field is given by

$$
P_{21}(k, z, \mu)=\mathscr{A}_{T}^{2}\left(1+f(z) \mu^{2}\right)^{2} P_{m}(k, z)
$$

where $\mu=\frac{k_{\|}}{k}=\cos \theta, f=d \log D_{+} / d \log a$ is the growth rate and A_{T} is given by

$$
\mathscr{A}_{T}(z)=4.0 m K b_{T} \bar{x}_{H I}(1+z)^{2}\left(\frac{\Omega_{b 0} h^{2}}{0.02}\right)\left(\frac{0.7}{h}\right) \frac{H_{0}}{H(z)}
$$

- The bias (with respect to the dark matter field) and the mean neutral fraction completely models the $21-\mathrm{cm}$ signal in the post-reionization epoch.*

$$
P_{21}(k, z, \mu)=\frac{\mathscr{A}_{T}^{2}}{\alpha_{\|} \alpha_{\perp}^{2}}\left[b_{T}+\frac{f(z) \mu^{2}}{F^{2}+\mu^{2}\left(1-F^{2}\right)}\right]^{2} P_{m}\left(\frac{k}{\alpha_{\perp}} \sqrt{1+\mu^{2}\left(F^{-2}-1\right)}, z\right)
$$

(Alcock-Paczynski test: $\alpha_{\|}=H^{f} / H^{r}, \alpha_{\perp}=D_{A}^{r} / D_{A}^{f}, F=\alpha_{\|} / \alpha_{\perp}$)

ONGOING/UPCOMING EXPT.(S)

MeerKAT (Australia)

> 3D HI 21 cm power spectrum at $z=1$ in $\left(k_{\perp}, k_{\|}\right)$space.

- The colorbar shows the value of the dimensionless quantity

$$
\Delta_{21}^{2}=k^{3} P_{21}(\mathbf{k}) /\left(2 \pi^{2}\right)
$$

- The asymmetry is indicative of redshift space distortions.
- Alcock-Paczynski effect enhanced the distortions

MULTIPOLES OF 21CM PS

- Redshift space 21 cm power spectrum can be decomposed in the basis of Legendre polynomials $\mathscr{P}_{e}(\mu)$ as

$$
P_{21}(k, \mu, z)=\sum_{\ell} P_{\ell}(z, k) \mathscr{P}_{\ell}(\mu)
$$

> The first few Legendre polynomials are given by

$$
\mathscr{P}_{0}(\mu)=1, \quad \mathscr{P}_{2}(\mu)=\frac{1}{2}\left(3 \mu^{2}-1\right), \quad \mathscr{P}_{4}(\mu)=\frac{1}{8}\left(35 \mu^{2}-30 \mu^{2}+3\right)
$$

> Coefficients of the expansion of the 21 cm power spectrum, can be found by inverting

$$
P_{\ell}(z, k)=\frac{(2 \ell+1)}{2} \int_{-1}^{+1} d \mu \mathscr{P}_{\ell}(\mu) P_{21}(z, k, \mu)
$$

SKA1-MID SPECIFICATIONS

More info: www.skatelescope.org

- Medium deep band-2 survey sky area coverage $5,000 \mathrm{deg}^{2}$ in frequency range $\nu=[0.95-1.75] G H z, z=[0-0.5]$
- Wide band-1 survey sky area coverage $20,000 \mathrm{deg}^{2}$ in the frequency range $\nu=[0.35-1.05] G H z, z=[0.35-3]$
> No. of antennae $=250, D_{\text {dis }}=15 \mathrm{~m}$, System temperature $T_{\text {sys }}=60 \mathrm{~K}$, Antennae efficiency $\epsilon=0.7$, Total observation time $T_{0}=500 \times 150$ with 150 independent pointings, Bandwidth $B=128 \mathrm{MHz}$

Monopole

$$
z=0.2
$$

$$
z=0.57
$$

Quadrupole

Hexadecapole

BAO IMPRINTS

- The sound horizon at the epoch of recombination is given by

$$
s\left(z_{d}\right)=\int_{0}^{a_{r}} \frac{c_{s} d a}{a^{2} H(a)} ; c_{s}(a)=c / \sqrt{3\left(1+3 \rho_{b} / 4 \rho_{\gamma}\right)}
$$

> rThe standard ruler ' s ' defines a transverse angular scale and a redshift interval in the radial direction as

$$
\theta_{s}(z)=\frac{s\left(z_{d}\right)}{(1+z) D_{A}(z)} \quad \delta z_{s}=\frac{s\left(z_{d}\right) H(z)}{c}
$$

> Measurement of θ_{s} and δz_{s}, allows the independent determination of $D_{A}(z)$ and $H(z)$.

- We calculate the expected error projections in five evenly space non-overlapping bins, in the redshift range $z=0-3$ with $\Delta z=0.5$.

$$
F_{i j}=\left(\frac{2 \ell+1}{2}\right) \int d k^{\prime} \int_{-1}^{+1} d \mu \frac{\mathscr{A}_{T}^{2}}{\alpha_{\|} \alpha_{\perp}^{2}}\left[b_{T}+\frac{f(z) \mu^{2}}{F^{2}+\mu^{2}\left(1-F^{2}\right)}\right]^{2} \frac{\mathscr{P}_{\ell}(\mu)}{\delta P_{21}^{2}(k, z, \mu)} \frac{\partial P_{b}\left(k^{\prime}\right)}{\partial p_{i}} \frac{\partial P_{b}\left(k^{\prime}\right)}{\partial p_{j}}
$$

$$
=\left(\frac{2 \ell+1}{2}\right) \int d k^{\prime} \int_{-1}^{+1} d \mu \frac{\mathscr{A}_{T}^{2}}{\alpha_{\|} \alpha_{\perp}^{2}}\left[b_{T}+\frac{f(z) \mu^{2}}{F^{2}+\mu^{2}\left(1-F^{2}\right)}\right]^{2} \frac{\mathscr{P}_{t}(\mu)}{\delta P_{21}^{2}(k, z, \mu)}\left(\cos x-\frac{\sin x}{x}\right)^{2} f_{i} f_{j} A^{2} e^{-2\left(k^{\prime} \Sigma_{s}\right)^{1^{4}}} e^{-k^{2} \Sigma_{n l}^{2}}
$$

$$
f_{1}=\mu^{2}-1, f_{2}=\mu^{2}, k_{n l}=\left(3.07 h^{-1} M p c\right)^{-1}, k_{\text {silk }}=\left(8.38 h^{-1} M p c\right)^{-1}
$$

$$
x=\sqrt{k^{2}\left(1-\mu^{2}\right) s_{\perp}^{2}+k^{2} \mu^{2} s_{\|}^{2}}
$$

- BAO Power spectrum: $P_{b}\left(k^{\prime}\right)=A \frac{\sin x}{x} e^{-\left(k^{\prime} \sum_{s}\right)^{1.4}} e^{-k^{2} \sum_{n l}^{2} / 2}$
> Parameter (s): $p_{i}=\ln \left(s_{\perp}\right)^{-1}$ and $p_{j}=\ln s_{\|}$Estimated error: $\sqrt{F_{i i}^{-1}}$

$$
\begin{aligned}
\Omega_{\Lambda} & =-0.883_{-2.987}^{0.978} \\
w_{0} & =-1.030_{-0.082}^{0.023} \\
w_{a} & =-0.088_{-0.343}^{0.162}
\end{aligned}
$$

(Constraints with $1-\sigma$ uncertainty)

SUMMARY

- Λ CDM paradigm: tensions from direct and indirect measurement of $\geq 5 \sigma$
- Beyond Λ CDM: new physics at early universe or late universe.
> Allowing a dS/AdS minima gives a hope to alleviate tension.
> Observation of redshifted 21 cm signal from post-deionization epoch can distinguishable from standard cosmological model with $>3 \sigma$ sensitivity.
- However 21 cm signal alone can not put tight constraints, need to look more comprehensive approach.

TAKE HOME MESSAGE

> Dark energy is still an open problem. We have no idea (honestly !!)
> We're always hoping to find new things, but we're finding that our model is really, really good - - maybe disappointingly good. (Max Tegmark)
> Detection of 21 cm signal will be a giant leap for precision cosmology.
> Upcoming SKA experiment promises to deliver qualitatively new insights on astrophysics and cosmology.

$\Gamma \hbar\left\{\alpha_{\eta}\right\}^{\kappa} \varphi \ddot{o} \mu \ldots$.

Indian Institute of Technology Madras
Center for Strings, Gravitation \& Cosmology
16-Sept-2023

