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Pulsars

A pulsar 1s a rapidly-rotating neutron star that emits a beam of electromagnetic radiation (usually in the form of
radio waves) from its magnetic poles

It the beam of radiation crosses our line of sight, we see a flash of radiation, similar to that of a lighthouse beacon.

Pulses from binary pulsar PSR B1913+16 that has given us the most compelling evidence to date for the existence
of gravitational waves
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Pulsar Timing Array

Detection of gravitational waves on the radio pulses that propagate from
a pulsar to a radio antenna on Earth.

A gravitational wave transiting the Earth-pulsar line of sight, creates a
perturbation in the intervening spatial metric.

One can then compare the measured and predicted times of arrival
(TOASs) of the pulses, using timing models.

Pulsar
Timing

Standard timing models factor in only deterministic influences on the | | - Array
arrival times of the pulses, the difference between the measured and |
predicted TOAs will result in a stream of timing residuals.

Pulsar Timing Array (PTA), can correlate the residuals across pairs of
Earth-pulsar baselines.

The key property of a PTA 1s that the signal from a stochastic GW
background will be correlated across the baselines, while that from the
other noise processes will not.
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ABSTRACT
We report multiple lines of evidence for a stochastic signal that is correlated among 67 pulsars
from the 15-year pulsar-timing data set collected by the North American Nanohertz Observatory for
Gravitational Waves. The correlations follow the Hellings Downs pattern expected for a stochastic
gravitational-wave background. The presence of such a gravitational-wave background with a power-
law- spectrum is favored over a model with only independent pulsar noises with a Bayes factor in excess
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of 10'*, and this same model is favored over an uncorrelated common power-law-spectrum model with
Bayes factors of 2001000, depending on spectral modeling choices. We have built a statistical back-
ground distribution for these latter Bayes factors using a method that removes inter-pulsar correlations
from our data set, finding p = 10~ ? (approx. 3¢) for the observed Bayes factors in the null no-correlation
scenario. A frequentist test statistic built directly as a weighted sum of inter-pulsar correlations yields
p=5x10""-19 x 10"* (approx. 3.5-40). Assuming a fiducial f%/* characteristic-strain spectrum,
as appropriate for an ensemble of binary supermassive black-hole inspirals, the strain amplitude is
24708 x 1071° (median + 90% credible interval) at a reference frequency of 1 yr~'. The inferred
gravitational-wave background amplitude and spectrum are consistent with astrophysical expectations
for a signal from a population of supermassive black-hole binaries, although more exotic cosmological
and astrophysical sources cannot be excluded. The observation of Hellings Downs correlations points

to the gravitational-wave origin of this signal.

Keywords: Gravitational waves - Black holes - Pulsars

1. INTRODUCTION

Almost a century had to elapse between Einstein's pre-
diction of gravitational waves (GWs, Finstein 1916) and
their measurement from a coalescing binary of stellar-
mass black holes (Abbott et al. 2016). However, their
existence had been confirmed in the late 1970s through
measurements of the orbital decay of the Hulse Taylor
binary pulsar (Hulse & Taylor 1975; Taylor et al. 1979).
Today. pulsars are again at the forefront of the quest to
detect GW3s, this time from binary systems of central
galactic black holes.

Black holes with masses of 10°-10'" M, exist at the
center of most galaxies and are closely correlated with
the global properties of the host, suggesting a sym-
biotic evolution (Magorrian et al. 1998; McConnell &
Ma 2013). Galaxy mergers are the main drivers of hi-
erarchical structure formation over cosmic time (Ilu-
menthal et al. 1954) and lead to the formation of
close massive black-hole binaries long after the mergers
(Begelman et al. 1980; Milosavljevi¢ & Merritt 2003).
The most massive of these (supermassive black-hole bi-
naries, SMBHBs, with masses 10*-10' M) emit GWs
with slowly evolving frequencies, contributing to a noise-
like broadband signal in the nHz range (the GW back-
ground, GWB; Rajagopal & Romani 1995; Jaffe &
Backer 2003; Wyithe & Loeb 2003; Sesana et al. 2004;
McWilliams et al. 2014; Burke-Spolaor et al. 2019). If
all contributing SMBHBs evolve purely by loss of cir-
cular orbital energy to gravitational radiation, the re-
sultant GWDB spectrum is well described by a simple
f~%/% characteristic-strain power law (Phinney 2001).
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However, GWB signals that are not produced by popu-
lations of inspiraling black holes may also lie within the
nHz band; these include primordial GWs from inflation,
scalar-induced GWs, and GW signals from multiple pro-
cesses arising due to cosmological phase transitions. such
as collisions of bubbles of the post-transition vacuum
state, sound waves, turbulence, and the decay of any
defects such as cosmic strings or domain walls that may
have formed (see, e.g., Guzzetti et al. 2016; Caprini &
Figueroa 2018; Doménech 2021, and references therein).

The detection of nHz GWs follows the template out-
lined by Pirani (1956, 2009), whereby we time the prop-
agation of light to measure modulations in the distance
between freely falling reference masses. lIistabrook &
Wahlguist (1075) derived the GW response of electro-
magnetic signals traveling between Earth and distant
spacecraft, sparking interest in low-frequency GW de-
tection. Sazhin (1978) and Detweiler (1979) described
nHz GW detection using Galactic pulsars and (effec-
tively) the solar system barycenter as references, relying
on the regularity of pulsar emission and planetary mo-
tions to highlight GW effects. The fact that pulsars
are such accurate clocks enables precise measurements
of their rotational, astrometric, and binary parameters
(and more) from the times-of-arrival of their pulses,
which are used to develop ever-refining end-to-end fim-
ing models. Hellings & Downs (1983) made the cru-
cial suggestion that the correlations between the time-
of-arrival perturbations of multiple pulsars could reveal
a GW signal buried in pulsar noise; Homani (1950) and
Foster & Backer (1090) proposed that a pulsar timing
array (PTA) of highly stable millisecond pulsars (Backer
et al. 1952) could be used to search for a GWB. Nev-
ertheless, the first multi-pulsar, long-term GWDB limits
were obtained by analyzing millisecond-pulsar residuals
independently, rather than as an array (Stinebring et al.
1990; Kaspi et al. 1994).
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We report multiple lines of evidence for a stochastic signal that is correlated among 67 pulsars
from the 15-year pulsar-timing data set collected by the North American Nanohertz Observatory for
Gravitational Waves. The correlations follow the Hellings Downs pattern expected for a stochastic

gravitational-wave background. The presence of such a gravitational-wave background with a power-
< law-spectrum is favored over a model with only independent pulsar noises with a Bayes factor in excess
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of 10", and this same model is favored over an uncorrelated common power-law-spectrum model with
Bayes factors of 2001000, depending on spectral modeling choices. We have built a statistical back-
ground distribution for these latter Bayes factors using a method that removes inter-pulsar correlations
from our data set, finding p = 10~ ? (approx. 3¢) for the observed Bayes factors in the null no-correlation
scenario. A frequentist test statistic built directly as a weighted sum of inter-pulsar correlations yields
p=5x10""-19 x 10"* (approx. 3.5-40). Assuming a fiducial f~%/* characteristic-strain spectrum,
as appropriate for an ensemble of binary supermassive black-hole inspirals, the strain amplitude is
2.41’3; x 1071° (median + 90% credible interval) at a reference frequency of 1 yr~'. The inferred
gravitational-wave background amplitude and spectrum are consistent with astrophysical expectations
for a signal from a population of supermassive black-hole binaries, although more exotic cosmological
and astrophysical sources cannot be excluded. The observation of Hellings Downs correlations points

to the gravitational-wave origin of this signal.
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ABSTRACT

We report multiple lines of evidence for a stochastic signal that is correlated among 67 pulsars
from the 15-year pulsar-timing data set collected by the North American Nanohertz Observatory for
Gravitational Waves. The correlations follow the Hellings Downs pattern expected for a stochastic
gravitational-wave background. The presence of such a gravitational-wave background with a power-
law- spectrum is favored over a model with only independent pulsar noises with a Bayes factor in excess
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ABSTRACT

We report multiple lines of evidence for a stochastic signal that is correlated among 67 pulsars
from the 15-year pulsar-timing data set collected by the North American Nanohertz Observatory for
Gravitational Waves. The correlations follow the Hellings Downs pattern expected for a stochastic
gravitational-wave background. The presence of such a gravitational-wave background with a power-
law- spectrum is favored over a model with only independent pulsar noises with a Bayes factor in excess

McWilliams et al. 2014; Burke-Spolaor et al. 2019).

all contributing SMBHBs evolve purely by loss of cir-
cular orbital energy to gravitational radiation, the re-
sultant GWB spectrum is well described by a simple
f~%3 characteristic-strain power law (Phinney 2001).
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: {1953) made the cru-

cial suggestion that the correlations between the time-

of-arrival perturbations of multiple pulsars could reveal

a GW signal buried in pulsar noise; Homani (1950) and

Foster & Backer (1990) proposed that a pulsar timing

array (PTA) of highly stable millisecond pulsars (Backer

et al. 19582) could be used to search for a GWB. Nev-

ertheless, the first multi-pulsar, long-term GWB limits

were obtained by analyzing millisecond-pulsar residuals

independently, rather than as an array (Stinebring et al.
1990; Kaspi et al. 1994).
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The NANOGrav 15-year Data Set: Search for Signals from New Physics

ABSTRACT

The 15-year pulsar timing data set collected by the North American Nanohertz Observatory for Grav-
itational Waves (NANOGrav) shows positive evidence for the presence of a low-frequency gravitational-
wave (GW) background. In this paper, we investigate potential cosmological interpretations of this
signal, specifically cosmic inflation, scalar-induced GWs, first-order phase transitions, cosmic strings,
and domain walls. We find that, with the exception of stable cosmic strings of field theory origin,
all these models can reproduce the observed signal. When compared to the standard interpretation
in terms of inspiraling supermassive black hole binaries (SMBHBs), many cosmological models seem
to provide a better fit resulting in Bayes factors in the range from 10 to 100. However, these results
strongly depend on modeling assumptions about the cosmic SMBHB population and, at this stage,
should not be regarded as evidence for new physics. Furthermore, we identify excluded parameter re-
gions where the predicted GW signal from cosmological sources significantly exceeds the NANOGrav
signal. These parameter constraints are independent of the origin of the NANOGrav signal and illus-
trate how pulsar timing data provide a new way to constrain the parameter space of these models.
Finally, we search for deterministic signals produced by models of ultralight dark matter (ULDM)
and dark matter substructures in the Milky Way. We find no evidence for either of these signals and
thus report updated constraints on these models. In the case of ULDM, these constraints outperform
torsion balance and atomic clock constraints for ULDM coupled to electrons, muons, or gluons.
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But no anisotropy in the data !
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Fundamental New Physics!!

NANOGrav Collaboration, arXiv: 2306.16219
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Fundamental New Physics!!

NANOGrav Collaboration, arXiv: 2306.16219
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Scalar Induced Gravity Wave

The amplitude of the primordial scalar power spec-
trum is well measured by CMB observations, A;
210 x 1072 at the CMB pivot scale keus
0.05Mpc~' (Aghanim et al. 2020). If we naively ex-
trapolate this value down to smaller scales, assuming a
fixed and slightly red-tilted h2€).,, spectrum with in-
dex n, ~ 0.96, we are led to conclude that there must
be increasingly less power in scalar perturbations on
shorter scales. This conclusion can, however, be eas-
ily avoided in models that deviate from the standard
picture of single-field slow-roll inflation giving rise to a
nearly scale-invariant spectrum of scalar perturbations.
A prominent example, among many other mechanisms,
consists in a stage of inflation close to an inflection point
in the scalar potential, which readily amplifies the scalar
perturbations leaving the horizon (see, e.g., Garcia-
Bellido & Ruiz Morales (2017); Ezquiaga et al. (2018);
Ballesteros & Taoso (2018)). An enhanced scalar power
spectrum at small scales is, therefore, a viable possi-
bility. Moreover, it promises a rich phenomenology with
regard to the production of GWs and potentially the ori-
gin of primordial black holes (PBHs) (Carr et al. 2016;
Garcia-Bellido et al. 2016; Inomata et al. 2017a; Ino-
mata & Nakama 2019; Wang et al. 2019; Escriva et al.
2022b). The possibility of having PBH formation in
models of single-field inflation is the subject of ongo-
ing debate (Kristiano & Yokoyama 2022; Riotto 2023a;
Choudhury et al. 2023a,b; Kristiano & Yokoyama 2023;
Riotto 2023b; Choudhury et al. 2023¢; Firouzjahi & Ri-
otto 2023). Below, we comment on the implications of
this debate for our PBH-related parameter bounds.

NANOGrav Collaboration, arXiv: 2306.16219
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Problem!!

Ruling Out Primordial Black Hole Formation From Single-Field Inflation

1,2,3,4,|t

Jason Kristiano'?*| and Jun’ichi Yokoyama

' Research Center for the Early Universe (RESCEU),
Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
> Department of Physics, Graduate School of Science,
The University of Tokyo, Tokyo 113-0033, Japan
*Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU),
WPI, UTIAS, The University of Tokyo, Kashiwa, Chiba 277-8568, Japan
* Trans-Scale Quantum Science Institute, The University of Tokyo, Tokyo 113-0033, Japan
(Dated: November 8, 2022)

The most widely studied formation mechanism of a primordial black hole (PBH) is collapse of
large-amplitude perturbation on small scales generated in single-field inflation. In this Letter, we
calculate one-loop correction to the large-scale power spectrum in such a model. We find models
producing appreciable amount of PBHs generically induce too large one-loop correction on large scale
probed by cosmic microwave background radiation. We therefore conclude that PBH formation from

single-field inflation is ruled out.

arXiv:2211.03395 [hep-th]
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Problem%<

The Primordial Black Hole Formation
from Single-Field Inflation is Not Ruled Out

Antonio Riotto!

L' Department of Theoretical Phusics and Gravitational Wave Science Center.

A standard scenario to form primordial black holes in the early universe is based on a phase of ultra-slow-roll in
single-field inflation when the amplitude of the short scale modes is enhanced compared to the CMB plateau. Based

on general arguments, we show that the loop corrections to the large-scale linear power spectrum from the short modes

are small and conclude that the scenario is not ruled out.

arXiv:2301.00599 [astro-ph.CO]



What was the Problem of the Problem?%

No quadratic divergence term is present !!

Ag,Total(p) = A2,Tl‘ee (p) + A2,One—loop (p)
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Is it possible to get SIGW-Delta from theory?%

Is NanoGRAYV signals pointing towards resonant particle creation during inflation?

M. R. Gangopadhyay,’** V. V. Godithi,> ! K. Ichiki,** R. Inui,** T.
Kajino,*" %% A. Manusankar,” ! ** G. J. Mathews,® ' and Yogesh!'#

'Centre For Cosmology and Science Popularization (CCSP),
SGT University, Gurugram, Delhi- NCR, Haryana- 122505, India.

* Department of Physics, IISER Mohali, S.A.S Nagar, Mohali, Punjab- 140306
*Department of Physics and Astrophysics, Nagoya University, Chikusa-ku, Nagoya, 464-8602, Japan
“School of Physics, and International Research Center for Big-Bang Cosmology and Element Genesis,

Beihang University, Beijing 100183, China

? Division of Science, National Astronomical Observatory of Japan,

2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan

®Graduate School of Science, The University of Tokyo,
7-3-1 Hongo, Bunkyo-ku, Tokyo 113-033, Japan
" Department of Phgysics, Cochin University of Science and Technology, Kalamassery, Kochi, Kerala-682022
Center for Astrophysics, Department of Physics and Astronomy,
University of Notre Dame, Notre Dame, IN 46556, USA.

We show that the observed cosmic gravitational wave background by the NANOGrav 15-year
collaboration may be the result of resonant particle creation during inflation. For the appropriate
amplitude and particle mass an enhancement of the primordial scalar power spectrum could induce

Secondary Induced Gravitational Waves (SIGW) which will appear on a scale corresponding to the
frequency of the NANOGrav detection. Since the resonant creation will have an effect comparable
to that of a delta function increment as studied by the NANOGrav 15-year collaboration, our study
indicates that the low-frequency Pulsar Timing Array (PTA) data could reveal the aspects of the
physics during inflation through the detection of a cosmic background of Gravitational Waves (GW).




Theoretical Background

The amplitude of the density perturbation of amplitude d,(k) when it crosses the Hubble radius

2 where /1 is the Hubble parameter and ¢ is the inflaton field
Oy(k) = . time derivative when the comoving wavenumber k crosses
Y1) the Hubble radius during inflation.

If the inflaton field has a simple Yukawa coupling (1) to a ferm

Lagrangian density is given by

In this case the equation of motion for the inflaton field ca.

Zy=—N ipyy

b+ 3He A v NA(py) =0
@ ¢'d¢ Yy) =

for N fermions of mass m coupled to the inflaton.

ion field yr of mass 771, then the interaction

n be written as

Chung, Kolb, Risotto, Thackchev, PRD 62, 043508



Theoretical Background

The effective mass of the fermion is then given by :

M(¢p) = m — Nig

The effective mass term thus vanishes as the inflaton field value reaches ¢. = m/N/. Hence, a,
resonant creation of this fermion field will take place as ¢ — ¢.. Which leads to:

The fermion VEV:

(1)) = n, Ot — ti) exp [—3H,(t — t,)]

E.O.M.

6 +3H¢ = —V'(¢) + NX¢)

MRG, Ichiki, Mathews, Kajino, PRD 92, 1235192



Theoretical Background

Solution to the equation of Motion

¢(t > t*) = gb(t > t*))\zo
+ N/\n,.ﬂ(t — t*) exp [—3H*(t — t*)]

Primordial Power spectrum as it exits the horizon
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Theoretical Background

The coefficient A can be directly related to the coupling constant A using for the particle
production Bogolyubov coefficient

‘ﬁk‘z = EXp _ﬂk-2
azl | ¢+ |

Then the number density of fermions (7.) can be calculated as:

9 2 Oodk k2 2_/13/2 1 13/2
n*—; - = G| —2—ﬂ3\¢*\

This gives:

B N S2 \/\gb*\ N5 1

n

A ~Y
3
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Theoretical Background

Given that the CMB normalization requires oy(k) |,_, ~ 107>, we then have A ~ 1.3NA>?

One can deduce that 4 < | requires N > las expected for the given values of A.

Finally we can write the power spectrum

P(k) ~ 87 (k)

Allowing the contribution from the scale dependence of the scalar spectral index, n, modelled by a

running a( = d Inn,/d In k), and running of the running, f( = d?1In n./d(In k)?). The scalar power
spectrum, can be re-written in a more familiar form:
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MCMC Analysis
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What’s The Future

A. Constraining the theoretical model required to realise the production of SIGW and PBHs
through the early Universe litmus tests such as BBN.

B. PBHs with mass less than 10° g have evaporated before the commencement of BBN
however the study of these, can unravel the mysteries related to Dark Matter,
Baryogenesis etc.

C. Since, GW signals are very clean, the detection of a GW signal of non-astrophysical origin,
could have highest of impact on the understanding of evolution of our Universe.

D. Please wait for next releases by the PTA collaborations, remember NanoHertz => Crest to
Crest 20-30 years!!
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