Probing the reheating phase through primordial magnetic field and CMB (based on arXiv:2012.10859v2 [hep-th])

Md Riajul Haque Department of Physics, IIT Guwahati, Assam, India

Inflationary Magnetogenesis

Connecting Reheating and Primordial magnetic field via CMB

Numerical Results

Main points and outcomes

Motivation

- Why reheating phase is import?
- Indirect bound on reheating dynamics (Taking into account both the CMB and present value of the magnetic field)

We Address :

- In the current study we consider present day Large Scale Magnetic Field (<u>LSMF</u>) and <u>CMB anisotropy</u> to probe the reheating phase of the universe followed by the standard inflationary phase.
- ★ Conventionally after the end of inflation, the magnetic field on the super-horizon scales <u>redshifts</u> with the scale factor as $B^2 \propto 1/a^4$ provided <u>inflaton</u> energy density transfers into plasma and the universe become good conductor instantly right after the end of inflation.
- ✤ In the reference Kobayashi et al. Phys. Rev. D 100, no.2, 023524 (2019) it has been shown that if the conductivity remains small <u>redshifts</u> of magnetic energy density becomes slower, $B^2 \propto 1/a^6 H^2$, due to electromagnetic <u>Faraday</u> induction. This helps one to obtain the required value of the present-day large scale magnetic field.
- * Taking into account both the <u>CMB anisotropic</u> constraints on the inflationary power spectrum, and the present value of the the large-scale magnetic field, our analysis reveals an important connection among the reheating parameters (T_{re}, w_{re}) , <u>magnetogensis</u> models and inflationary scalar spectral index.

Inflationary Magnetogenesis

D Electromagnetic power spectrum :

- FLRW metric background expressed in conformal coordinate: $ds^2 = a(\tau)^2 \left(-d\tau^2 + d\mathbf{x}^2\right)$
- The gauge field action: $S = -\frac{1}{4} \int d^4x \sqrt{-g} I(\tau)^2 F_{\mu\nu} F^{\mu\nu}$
- In order to quantize the field components A_{μ} are in terms of irreducible scalar and vector components $A_{\mu} = (A_0, \partial_i S + v_i)$ with $\partial_i V_i = 0$.
- One write $V_i(\tau, x)$ in terms of annihilation and creation operator:

$$V_i(\tau, x) = \sum_{p=1,2} \int \frac{d^3k}{(2\pi)^3} \epsilon_i^{(p)}(\mathbf{k}) \left\{ e^{i\mathbf{k}\cdot\mathbf{x}} a_k^{(p)} u_k^{(p)}(\tau) + e^{-i\mathbf{k}\cdot\mathbf{x}} a_k^{\dagger(p)} u_k^{\ast(p)}(\tau) \right\}$$

The equation of motion of the mode function:

$$u_k^{(p)\prime\prime} + 2\frac{I'}{I} + k^2 u_k^{(p)\prime} = 0$$

Conventionally the electromagnetic power spectrum is expressed in terms of those mode functions: $P_{E}(k) = \frac{k^{3}}{2} \sum |u_{k}^{(p)'}|^{2} : P_{B}(k) = \frac{k^{5}}{2} \sum |u_{k}^{(p)}|^{2}$

$$P_E(k) = \frac{k^3}{2\pi^2 a^4} \sum_{p=1,2} |u_k^{(p)\prime}|^2 \; ; \; P_B(k) = \frac{k^5}{2\pi^2 a^4} \sum_{p=1,2} |u_k^{(p)}|^2$$

In order to diagonalize the Hamiltonian, we employ the Bogoliubov transformation $b_{k}^{(p)}(\tau) = \alpha_{k}^{(p)}(\tau)a_{k}^{(p)} + \beta_{k}^{(p)*}a_{-k}^{(p)\dagger}, \ b_{k}^{(p)\dagger}(\tau) = \alpha_{k}^{(p)*}(\tau)a_{k}^{(p)\dagger} + \beta_{k}^{(p)}(\tau)a_{-k}^{(p)}$ $\alpha_k^{(p)}$ and $\beta_k^{(p)}$ are the Bogoliubov coefficients defined as : * $\alpha_k^{(p)}(\tau) = I\left(\sqrt{\frac{k}{2}}u_k^{(p)} + \frac{i}{\sqrt{2k}}u_k^{\prime(p)}\right) \quad ; \quad \beta_k^{(p)}(\tau) = I\left(\sqrt{\frac{k}{2}}u_k^{(p)} - \frac{i}{\sqrt{2k}}u_k^{\prime(p)}\right)$ The power spectrum in terms of Bogoliubov coefficients : $P_E(k) = \frac{k^4}{4\pi^2 a^4 I^2} \sum_{p=1,2} |\alpha_k^{(p)} - \beta_k^{(p)}|^2 ; \ P_B(k) = \frac{k^4}{4\pi^2 a^4 I^2} \sum_{p=1,2} |\alpha_k^{(p)} + \beta_k^{(p)}|^2$ Modelling the coupling function We consider the widely considered power-law form of the coupling function $I(\tau) = \begin{cases} \left(\frac{a_{end}}{a}\right)^n & a \le a_{end} \\ 1 & a \ge a_{end} \end{cases}$ The solution of the mode function considering perfect de-sitter background Hubble parameter H_{Inf} : $u_{k} = \frac{1}{2I} \left(\frac{\pi}{aH_{inf}} \right)^{\frac{1}{2}} H_{-n+\frac{1}{2}}^{(1)} \left(\frac{k}{aH_{inf}} \right)$

The time dependent Bogoliubov coefficient are expressed as

$$\alpha_k = \left(\frac{\pi z}{8}\right)^{\frac{1}{2}} \left\{ H^{(1)}_{-n+\frac{1}{2}}(z) - iH^{(1)}_{-n-\frac{1}{2}}(z) \right\} \; ; \; \beta_k = \left(\frac{\pi z}{8}\right)^{\frac{1}{2}} \left\{ H^{(1)}_{-n+\frac{1}{2}}(z) + iH^{(1)}_{-n-\frac{1}{2}}(z) \right\}$$

★ In the super-Horizon limit : $\frac{1}{|\beta_k^{(p)}|^2} \ll \theta_k^{(p)} \ll 1$. The simplified form of the electromagnetic power spectrum :

$$P_E(k) \simeq \frac{k^4}{4\pi^2 a^4 I^2} \sum_{p=1,2} 4|\beta_k^{(p)}|^2 \ ; \ P_B(k) \simeq \frac{k^4}{4\pi^2 a^4 I^2} \sum_{p=1,2} |\beta_k^{(p)}|^2 \left(\theta_k^{(p)}\right)^2$$

Final expression for the spectrum:

$$\begin{split} P_{E}(k) \simeq \frac{4k^{4}}{2\pi^{2}a^{4}I^{2}} \left(\frac{\pi z}{8}\right) \left\{ H_{-n+\frac{1}{2}}^{*(1)}(z)H_{-n+\frac{1}{2}}^{(1)}(z) + iH_{-n+\frac{1}{2}}^{*(1)}(z)H_{-n-\frac{1}{2}}^{(1)}(z) \right\} & -\frac{4k^{4}}{2\pi^{2}a^{4}I^{2}} \left(\frac{\pi z}{8}\right) \left\{ iH_{-n-\frac{1}{2}}^{*(1)}(z)H_{-n+\frac{1}{2}}^{(1)}(z) - H_{-n-\frac{1}{2}}^{(1)}(z)H_{-n-\frac{1}{2}}^{*(1)}(z) \right\} \\ P_{B}(k) \simeq \frac{k^{4}}{2\pi^{2}a^{4}I^{2}} \left(\frac{\pi z}{8}\right) \left\{ H_{-n+\frac{1}{2}}^{*(1)}(z)H_{-n+\frac{1}{2}}^{(1)}(z) + iH_{-n+\frac{1}{2}}^{*(1)}(z)H_{-n-\frac{1}{2}}^{(1)}(z) \right\} & -\frac{k^{4}}{2\pi^{2}a^{4}I^{2}} \left(\frac{\pi z}{8}\right) \left\{ iH_{-n-\frac{1}{2}}^{*(1)}(z) - H_{-n-\frac{1}{2}}^{(1)}(z)H_{-n-\frac{1}{2}}^{*(1)}(z) \right\} \\ \left\{ \arg\left[\frac{\pi z}{8} \left(H_{-n+\frac{1}{2}}^{(1)}(z) - iH_{-n-\frac{1}{2}}^{(1)}(z)\right) \left(H_{-n+\frac{1}{2}}^{*(1)}(z) - iH_{-n-\frac{1}{2}}^{*(1)}(z)\right)\right] - \pi \right\}^{2} \end{split}$$

For n being positive integer

$$P_E(k) \simeq \frac{8\Gamma(n+\frac{1}{2})^2 H_{inf}^4}{I^2 \pi^3} \left(\frac{k}{2aH_{inf}}\right)^{-2(n-2)} \quad ; \ P_B(k) \simeq \frac{8\Gamma(n-\frac{1}{2})^2 H_{inf}^4}{I^2 \pi^3} \left(\frac{k}{2aH_{inf}}\right)^{-2(n-3)}$$

- Most of the studies so far considered the fact that when I^2 becomes constant at the end of the inflation and $|\beta_k^{(p)}|^2$ is conserved.
- Consequently, $\mathcal{P}_B(k) \propto a^{-4}$ until today.

Magnetic power spectrum at the end of the inflation :

$$\mathcal{P}_B^{end}(k) \simeq \frac{k^4}{2\pi^2 a_{end}^4} \left(\theta_k^{end}\right)^2 |\beta_k^{end}|^2$$

The magnetic power spectrum at the present universe:

$$\mathcal{P}_{B0}(k) \simeq \mathcal{P}_{B}^{end}(k) \left(\frac{a_{end}}{a_0}\right)$$

✤ It is clear that the required magnetic field strength 10⁻⁹ - 10⁻²² G is difficult to achieve within the conventional framework, unless one introduces slow decreasing rate of magnetic energy density in some early state of universe evolution.

After inflation dynamics: reheating

- ✤ During reheating in the Fourier space, the mode function solution of the free Maxwell equation : $u_k^{(p)} = \frac{1}{\sqrt{2k}} \{ \alpha_k^{(p)}(z_{end}) e^{-ik(\tau \tau_{end})} + \beta_k^{(p)}(z_{end}) e^{-ik(\tau \tau_{end})} \}$
- $\bullet \text{ Now the phase factor: } \theta_k^{(p)} = \left\{ Arg\left[\alpha_k^{(p)} \left(z_{end} \right) \beta_k^{(p)*} \left(z_{end} \right) \right] \pi \right\} 2k \left(\tau \tau_{end} \right) \qquad \tau \tau_{end} = \int_{a_{end}}^a \frac{da}{a^2 H}$
- ✤ The conventional one will be associated with the redshift factor $\propto a^{-4}$ emerging from the first term in the right-hand side of the equation. Important one is associated with the redshift factor $\propto a^{-6}H^{-2}$ emerged out from the second term of the above equation.
- The magnetic power spectra during reheating: $P_B(k) \simeq \frac{k^4}{2\pi^2 a_{\pi\pi}^4} (\theta_k)^2 |\beta_k^{end}|^2$
- Final general expression of the present-day magnetic power spectrum:

$$P_{B_0}(k) = P_{B_{re}}(k) \left(\frac{a_{re}}{a_0}\right)^4 \simeq \frac{k^4}{2\pi^2} (\theta_k^{re})^2 |\beta_k^{end}|^2 \frac{1}{a_0^4}$$

For integer value of n, the expression of the present-day magnetic power spectrum:

$$P_{B0}(k) \simeq \frac{8\Gamma(n-\frac{1}{2})^2}{\pi^3} H_{inf}^4 \left(\frac{k}{2a_{end}H_{inf}}\right)^{-2(n-3)} \left(\frac{a_{end}}{a_0}\right)^4 \left\{1 + (2n-1)\int_{a_{end}}^{a_{re}} \frac{da}{a} \frac{a_{end}H_{inf}}{aH}\right\}$$

Reheating dynamics: Connecting Reheating and Primordial magnetic field via CMB

Case-I:

- For this we follow the reheating dynamics proposed in Kamionkowski et al. Phys. Rev. Lett. 113, 041302 (2014), where <u>inflaton</u> energy is assumed to converted into radiation instantaneously at the end of reheating.
- The dynamics is parametrized by an effective equation of state ω_{eff} , reheating temperture T_{re} and duration N_{re} (e-folding number during reheating era).

The expression for
$$T_{re}$$
 and N_{re} : $T_{re} = \left(\frac{43}{11g_{s,re}}\right)^{\frac{1}{3}} \left(\frac{a_0 T_0}{k'}\right) H_k e^{-N_k} e^{-N_r}$

$$N_{re} = \frac{4}{(1 - 3\omega_{eff})} \left[-\frac{1}{4} ln \left(\frac{45}{\pi^2 g_{re}} \right) - \frac{1}{3} ln \left(\frac{11g_{s,re}}{43} \right) - ln \left(\frac{k'}{a_0 T_0} \right) - ln \left(\frac{V_{end}^{1/4}}{H_k} \right) - N_k \right]$$

Reheating parameters and primordial magnetic field: For integer value of n, the expression of the phase parameter:

$$\theta_k^{re} \simeq \frac{2}{2n-1} \frac{k}{a_{end}H_{inf}} \left\{ 1 + \frac{4n-2}{3\omega_{eff}+1} \left(\frac{a_{end}H_{inf}}{a_{re}H_{re}} - 1 \right) \right\}$$

The present-day magnetic field turns out as

$$P_{B_0}(k) \simeq \frac{8\Gamma(n-\frac{1}{2})^2}{\pi^3 H_{Inf}^{-4}} \left(\frac{k}{2a_{end}H_{Inf}}\right)^{-2(n-3)} \left(\frac{a_{end}}{a_0}\right)^4 \left\{1 + \left(\frac{4n-2}{3\omega_{eff}+1}\right) \left(\frac{a_{end}H_{inf}}{a_{re}H_{re}} - 1\right)\right\}^2$$

* The ratio between the scale factor a_0 and a_{re} , considering entropy conservation:

$$\frac{a_0}{a_{re}} = \left(\frac{11g_{s,re}}{43}\right)^{\frac{1}{3}} \frac{T_{re}}{T_0}$$

Case-II:

In this reheating model we consider perturbative reheating model where effective equation of state is time-dependent.

★ In perturbative reheating the corresponding energy density satisfy the standard Boltzmann equations: $\dot{\rho}_{\phi}+3H(1+w_{\phi}^{1})\rho_{\phi}-\Gamma_{\phi}\rho_{\phi}(1+w_{\phi}^{1})=0$ $\dot{\rho}_{R}+4H\rho_{R}+\Gamma_{\phi}\rho_{\phi}(1+w_{\phi}^{1})=0$

• Initial conditions:
$$\rho_{\phi}(A=1) = \frac{3}{2}V_{end}(\phi)$$
; $\rho_{R}(A=1) = 0$

Reheating temperature is identified from radiation temperature at the point of $H(t_{re}) = \Gamma_{\phi}$, when maximum <u>inflaton</u> energy density transfer into radiation.

$$H(A_{re})^2 = \left(\frac{\dot{A}_{re}}{A_{re}}\right)^2 = \frac{\rho_{\phi}(\Gamma_{\phi}, A_{re}, n_s^k) + \rho_R(\Gamma_{\phi}, A_{re}, n_s^k))}{3M_p^2} = \Gamma_{\phi}^2$$

• The reheating temperature in terms of radiation temperature: $T_{re} = T_{rad}^{end} = \left(\frac{30}{\pi^2 a_s(T)}\right)^{1/4} \rho_R(\Gamma_{\phi}, A_{re}, n_s^k)^{1/4}$

- From entropy conservation: $T_{re} = \left(\frac{43}{11g_{re}}\right)^{1/3} \left(\frac{a_0 T_0}{k}\right) H_k e^{-N_k} e^{-N_{npre}} e^{-N_{pre}}$
- * Now connecting above equations, we can establish one to one correspondence between T_{re} and $\Gamma \phi$.

Connecting reheating and primordial magnetic field:

• For pertubative decay of the inflaton field the phase parameter now explicitly depends on the evolution of the two energy components ρ_{ϕ} and ρ_{R} with time

$$\theta_k^{re} \simeq \frac{2}{2n-1} \frac{k}{a_{end} H_{Inf}} \left\{ 1 + (2n-1) \int_{a_{end}}^{a_{re}} \frac{\sqrt{3}M_p}{\sqrt{\rho_\phi(a) + \rho_R(a)}} \frac{a_{end} H_{inf}}{a} \frac{da}{a} \right\}$$

The magnetic power spectrum in the present universe:

$$P_{B0}(k) \simeq \frac{\Gamma(n-\frac{1}{2})^2}{\pi^3} \frac{2^{2n-3} \left(2.6 \times 10^{39}\right)}{(6.4 \times 10^{-39})^{2n-6}} \left(\frac{k}{a_0} M_{pc}\right)^{-2(n-3)} \left(\frac{11g_{s,re}}{43}\right)^{\frac{2-2n}{3}} \left(\frac{T_{re}}{T_0}\right)^{2-2n} \left(\frac{H_{inf}}{GeV} \frac{1}{A_{re}}\right)^{2(n-1)} \left\{1 + (2n-1) \int_{1}^{A_{re}} \frac{\sqrt{3}M_p H_{Inf}}{\sqrt{\rho_{\phi}(a) + \rho_R(a)}} \frac{dA}{A^2}\right\}^2 G^2$$

Discussion on strong coupling and backreaction problem

- As coupling function monomial function of scale factor $I \propto a^{-n}$, for negative value of n the gauge kinetic function increasing during inflation.
- ★ The coupling function boils down to unity after inflation. The effective electromagnetic coupling, $\alpha_{eff} = \frac{e^2}{4\pi I} = \frac{\alpha}{I}$ for negative values of n becomes very large, which turns the theory non-perturbative.
- ♦ On the other hand, if one considers positive values of $n \ge 0$, throughout the inflationary period the gauge kinetic function $I(\tau)$ will always larger than unity, so there is a considerable reduction of the effective electromagnetic coupling α_{eff} . Strong coupling problem can be avoided for positive values of n but backreaction problem arise as production of electromagnetic energy can generically take over the background energy density.

To avoid backreaction problem:

$$\frac{\rho_A}{\rho_{tot}} \le \zeta$$

Total gauge field energy density at a given scale factor a_T during inflation can be calculated as:

$$\rho_A(a_T) = \rho_E(a_T) + \rho_B(a_T) = \frac{I(a_T)^2}{2} \int_{k_{IR}}^{k_T} \frac{dk}{k} \left\{ \mathcal{P}_E(k, a_T) + \mathcal{P}_B(k, a_T) \right\}$$

$$\rho_A(a_T) = \frac{I(a_T)^2}{2} \int_{k_{IR}}^{k_T} \frac{dk}{4\pi k H_{end}} \left(\frac{k}{a_T}\right)^5 \left\{ \left| H_{-n-\frac{1}{2}}^{(1)} \left(\frac{k}{a_T H_{end}}\right) \right|^2 + \left| H_{-n+\frac{1}{2}}^{(1)} \left(\frac{k}{a_T H_{end}}\right) \right|^2 \right\}$$

For example, the scale-invariant electric power spectrum which corresponds to n=2, the total gauge field energy density at the end of the inflation

$$\rho_A \sim \frac{9}{4} \frac{H_{end}^4}{\pi^2} N_k + \frac{H_{end}^4}{8\pi^2} \left(1 - e^{-2N_k}\right) \sim 10^{-10} \rho_{tot}$$

★ However, scale-invariant magnetic power spectrum (n=3), immediate back-reaction problem as the electric field power spectrum, $\mathcal{P}_E(k) \propto \left(\frac{k}{aH_{end}}\right)^{-2} \to \infty$ for large scale limit $\frac{k}{aH_{end}} \to 0$.

Numerical Results

k-independent electric power spectrum: Case-I

For numerical results, here we consider a class of inflationary models :

1. Minimal plateau model $V_{min} = \Lambda \frac{m^{4-p} \phi^p}{1 + \left(\frac{\phi}{\phi_*}\right)^p}$ 2. Higgs-Starobinsky inflation $V(\phi) = \Lambda^4 \left[1 - e^{-\sqrt{\frac{2}{3\alpha}}\frac{\phi}{M_p}}\right]^{2p}$ 3. Natural inflation $V(\phi) = \Lambda^4 \left[1 - \cos\left(\frac{\phi}{f}\right) \right]$

Numerical Results

□ k-independent electric power spectrum: Case-II (Perturbative reheating)

Here, we assume that the average value of the inflaton equation of state $\omega_{\phi} = (p-2)/(p+2)$

**

Numerical Results

Constraining magnetogensis model: maximum possible value of n

✤ The direct constraint on the value of n will come from the strong coupling and the backreaction problem leading to the fact that n should lie within $0 \le n \le n_{max}$.

✤ Irrespective of the inflationary models under consideration, reheating temperature associated with n_{max} can be observed as high as ~ 10⁷GeV.

Main points and outcomes

- * we can clearly predict a unique value of ω_{eff} associated with a specific choice of the present magnetic field. Additionally, for a given ω_{eff} the reheating temperature is also determined uniquely.
- Taking into account CMB constraints the reheating phase can be uniquely probed by the evolution of the primordial magnetic field

Scale invariant electric power spectra:

- ✤ For case-I reheating scenario, irrespective of models under consideration large scale magnetic field constrains the effective equation of state within 0.150 < ω_{eff} < 0.325 and consequently predicts the low value of reheating temperature (10⁻², 10³) GeV.
- ♦ For the perturbative reheating scenario the range of <u>inflaton</u> equation of state 0 < $ω_φ ≤ 0.28$ is found to be observationally not viable for $\mathcal{P}_{B0}^{\frac{1}{2}} ≥ 10^{-18}$ G.

* This observation provides us a strong constraint on the possible form of the <u>inflaton</u> potential near its minimum with $p \gtrsim 3.6$ considering the aforesaid observable limit of the present-day magnetic field strength.

Constraining magnetogensis model:

✤ Considering both backreaction and strong coupling problems into account, the maximum allowed value of n would be $n_{max} \sim 2.3$.

THANK YOU