
Axions and 
helical magnetic fields

Rajeev Kumar Jain
Dept. of Physics

Indian Institute of Science
Bangalore

T. Kobayashi and RKJ, JCAP 03, 025 (2021)

IITM Weekly Cosmology meeting



Rajeev Kumar Jain                                                                                                 Axions and helical magnetic fields

Outline of the talk 
• What are Axions or Axion-like particles (ALP)? 

• Axions as dark matter candidates 

• Axion misalignment mechanism 

• Conventional and kinetic misalignment scenario 

• Misalignment due to helical magnetic fields 

• Axion window constraints — relic abundance 

• Constant mass axion 

• QCD axion 

• Conclusions and future directions
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What are Axions ? 

• Axions or Axion-like particles are considered promising 
candidates for the cold dark matter 

• Introduced to solve the strong CP problem of QCD —
theory predicts some degree of CP violation — but no 
experimental observation so far ! 

• Axion — origin as a goldstone boson — due to the 
spontaneous symmetry breaking — an additional U(1) PQ 
symmetry 

• Similar to the Higgs mechanism — axion is not exactly 
massless !
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Dark matter candidates 

Credit: G. Bertone and T. M. P. Tait
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Dark matter candidates 

Credit: G. Bertone and T. M. P. Tait

Dark matter is one of 
the known unknowns 

of our universe !



Rajeev Kumar Jain                                                                                                 Axions and helical magnetic fields

Dark matter candidates 



Rajeev Kumar Jain                                                                                                 Axions and helical magnetic fields

Axion dynamics 

In this paper we analyze the dynamics of the QCD axion and axion-like fields in the presence

of helical electromagnetic fields. If the helical fields are coherently excited in the early universe, it

gives an e↵ective linear potential to the axion via the coupling ✓FF̃ , which forces the axion field

to roll in one direction. We show that the FF̃ background has the net e↵ect of increasing the relic

abundance of axion dark matter, and therefore can completely transform the parameter window

where axions are compatible with cosmology. Since an E ·B composed of the SM photons vanishes

in the reheating epoch as the conductivity of the universe rises and the electric fields short out,

in this paper we will mainly focus on U(1) gauge fields in a hidden sector, and show that hidden

electromagnetic fields can significantly modify the axion window. However, the SM electromagnetic

fields can also have strong e↵ects if the reheating temperature is su�ciently low.

Before proceeding with our analysis, we should remark that the possibility of helical fields af-

fecting the axion dynamics was first pointed out in [15]. However this work studies the e↵ect in

a universe with vanishing electric fields and argues that the axion obtains a significant velocity by

helical magnetic fields alone, even though in such a case there is no coherent FF̃ and so there

should be no source for the axion velocity. We explicitly show that electric fields are necessary

for a↵ecting the axion dynamics, in disagreement with [15]. Similar conclusions on this point were

reached in [16, 17], which studied helical SM magnetic fields in a conducting cosmological plasma

(and hence with tiny electric fields) and found the e↵ect on the QCD axion to be negligible. Let us

also mention that, besides electromagnetic fields, there can be other e↵ects that source a velocity

to the axion field in the early universe and modify the conventional axion window. These include

axion potentials with multiple hierarchically separated periods [18,19], shift-symmetric couplings to

gravity [20], derivative couplings to other coherent scalar fields such as the inflaton [21, 22], and an

explicit breaking of the shift symmetry by higher-dimensional operators [23–25].

This paper is organized as follows: In Section 2 we give general discussions on the axion dynamics

in a background of helical electromagnetic fields. In Section 3 we explicitly compute the e↵ect of the

helical fields on the relic abundance of axion-like particles and the QCD axion, and show how the

parameter windows are a↵ected. We conclude with a discussion of directions for further research in

Section 4. In the appendix we analyze the cosmological evolution of helical electromagnetic fields.

2 Axion Dynamics with Helical Electromagnetic Fields

We consider an axion coupled to a U(1) gauge field,

Lp
�g

= �1

2
f2gµ⌫@µ✓@⌫✓ �m2f2 (1� cos ✓) +

↵

8⇡
✓Fµ⌫F̃

µ⌫ . (2.1)

Here the axion is written as a dimensionless angle ✓, in terms of which the distance between the

adjacent vacua is �✓ = 2⇡. The mass m may or may not depend on the cosmic temperature, and f

is the axion decay constant. The U(1) gauge field can be either the SM photon or a hidden photon,

↵ is a dimensionless gauge coupling and can have either sign, and the dual field strength is

F̃µ⌫ =
1

2
⌘µ⌫⇢�F⇢�. (2.2)

Here ⌘µ⌫⇢� = ✏µ⌫⇢�/
p
�g is a totally antisymmetric pseudotensor with the Levi–Civita symbol

normalized as |✏0123| = 1.
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• Consider an axion coupled to a U(1) gauge field

• Global U(1) is already broken broken by the end 
of inflation, and continues to be broken in the 
post-inflationary epoch

Throughout this paper we consider cases where the global U(1) is already broken by the end of

inflation, and continues to be broken in the post-inflationary epoch. Thus we impose

f >
H

inf

2⇡
, T

max

, (2.3)

where H
inf

is the Hubble rate during inflation, T
max

is the highest temperature achieved in the post-

inflationary universe, and for simplicity we identified the symmetry breaking scale with the decay

constant. The inflationary expansion sets the axion field to be spatially homogeneous throughout

the observable universe, and gives rise to the vacuum misalignment scenario [26–28] for axion dark

matter.

However, the basic picture of the vacuum misalignment becomes modified in the presence of a

coherent FF̃ background, because the ✓FF̃ coupling sources an e↵ective linear potential for the

axion. This is also seen in the axion’s equation of motion. Fixing the metric to a flat FRW,

ds2 = �dt2 + a(t)2dx2, (2.4)

the equation of motion for a homogeneous axion field reads

0 = ✓̈ + 3H ✓̇ +m2 sin ✓ � ↵

8⇡

FF̃

f2

. (2.5)

Here, an overdot denotes a t-derivative, and H = ȧ/a. Before studying this equation in detail, we

first discuss the physical meaning of FF̃ .

2.1 Helical Electromagnetic Fields in the SM and Hidden Sector

The term FF̃ can be written as a dot product of electric and magnetic fields,

Fµ⌫F̃
µ⌫ = �4EµB

µ, (2.6)

where

Eµ = u⌫F
µ⌫ , Bµ =

1

2
⌘µ⌫⇢�u�F⌫⇢, (2.7)

are the fields measured by a comoving observer with 4-velocity uµ (uµuµ = �1, ui = 0; we use

Latin letters to denote spatial indices). Even for a hidden U(1), we refer to the quantities in (2.7)

as the ‘electric’ and ‘magnetic’ fields. As can be understood by noting that FF̃ is parity-odd, a

nonvanishing E · B implies an asymmetry between the two circular polarization states, and hence

such electromagnetic fields are referred to as ‘helical’ fields.

The energy density in the gauge field is a sum of the electromagnetic fields squared,1 ⇢A =

(EµE
µ + BµB

µ)/2. Then, noting that (Eµ ± Bµ)(Eµ ± Bµ) � 0, one finds that the magnitude of

the product E ·B is bounded by the energy density,

|EµB
µ|  ⇢A . (2.8)

1This can be checked by varying the gauge kinetic term �FF/4 with respect to the metric to obtain the energy-

momentum tensor. Note that the interaction term ✓FF̃ does not contribute to the energy-momentum tensor.
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• Background metric and the equation of motion
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Helical EM fields
• For visible or dark sector

Throughout this paper we consider cases where the global U(1) is already broken by the end of

inflation, and continues to be broken in the post-inflationary epoch. Thus we impose

f >
H

inf

2⇡
, T

max

, (2.3)

where H
inf

is the Hubble rate during inflation, T
max

is the highest temperature achieved in the post-
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• The energy density of the EM field is

⇢A = (EµE
µ +BµB

µ)/2

(Eµ ±Bµ)(E
µ ±Bµ) � 0 |EµB

µ|  ⇢A

In this paper we analyze the dynamics of the QCD axion and axion-like fields in the presence

of helical electromagnetic fields. If the helical fields are coherently excited in the early universe, it

gives an e↵ective linear potential to the axion via the coupling ✓FF̃ , which forces the axion field

to roll in one direction. We show that the FF̃ background has the net e↵ect of increasing the relic

abundance of axion dark matter, and therefore can completely transform the parameter window

where axions are compatible with cosmology. Since an E ·B composed of the SM photons vanishes

in the reheating epoch as the conductivity of the universe rises and the electric fields short out,

in this paper we will mainly focus on U(1) gauge fields in a hidden sector, and show that hidden

electromagnetic fields can significantly modify the axion window. However, the SM electromagnetic

fields can also have strong e↵ects if the reheating temperature is su�ciently low.

Before proceeding with our analysis, we should remark that the possibility of helical fields af-

fecting the axion dynamics was first pointed out in [15]. However this work studies the e↵ect in

a universe with vanishing electric fields and argues that the axion obtains a significant velocity by

helical magnetic fields alone, even though in such a case there is no coherent FF̃ and so there

should be no source for the axion velocity. We explicitly show that electric fields are necessary

for a↵ecting the axion dynamics, in disagreement with [15]. Similar conclusions on this point were

reached in [16, 17], which studied helical SM magnetic fields in a conducting cosmological plasma

(and hence with tiny electric fields) and found the e↵ect on the QCD axion to be negligible. Let us

also mention that, besides electromagnetic fields, there can be other e↵ects that source a velocity

to the axion field in the early universe and modify the conventional axion window. These include

axion potentials with multiple hierarchically separated periods [18,19], shift-symmetric couplings to

gravity [20], derivative couplings to other coherent scalar fields such as the inflaton [21, 22], and an

explicit breaking of the shift symmetry by higher-dimensional operators [23–25].

This paper is organized as follows: In Section 2 we give general discussions on the axion dynamics

in a background of helical electromagnetic fields. In Section 3 we explicitly compute the e↵ect of the

helical fields on the relic abundance of axion-like particles and the QCD axion, and show how the

parameter windows are a↵ected. We conclude with a discussion of directions for further research in

Section 4. In the appendix we analyze the cosmological evolution of helical electromagnetic fields.

2 Axion Dynamics with Helical Electromagnetic Fields

We consider an axion coupled to a U(1) gauge field,

Lp
�g

= �1

2
f2gµ⌫@µ✓@⌫✓ �m2f2 (1� cos ✓) +

↵

8⇡
✓Fµ⌫F̃

µ⌫ . (2.1)

Here the axion is written as a dimensionless angle ✓, in terms of which the distance between the

adjacent vacua is �✓ = 2⇡. The mass m may or may not depend on the cosmic temperature, and f

is the axion decay constant. The U(1) gauge field can be either the SM photon or a hidden photon,

↵ is a dimensionless gauge coupling and can have either sign, and the dual field strength is

F̃µ⌫ =
1

2
⌘µ⌫⇢�F⇢�. (2.2)

Here ⌘µ⌫⇢� = ✏µ⌫⇢�/
p
�g is a totally antisymmetric pseudotensor with the Levi–Civita symbol

normalized as |✏0123| = 1.

2
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Helical EM fields

• If the U(1) gauge field is a hidden photon, it behaves 
as extra radiation and contributes to the effective 
extra relativistic degrees of freedom of the universe

Even if an electric field composed of the SM photons (or hypercharge gauge bosons) is produced

in the early universe, it gets shorted out during the reheating epoch as the conductivity of the

universe rises, after which FF̃ also vanishes. (For a discussion on the evolution of the conductivity,

see e.g. [7].) However, SM electric fields may still survive until rather late times, if the reheating

temperature is low, and also if the decay of the inflaton happens abruptly as in some models of

preheating [29] instead of gradually through a perturbative decay. On the other hand, primordial

electric fields composed of hidden photons that are decoupled from the SM remain intact during

reheating, unless particles charged under the hidden U(1) are also produced. In the following we

will mainly consider helical electromagnetic fields composed of hidden photons, however the analyses

will also apply to the SM photon until the time when the electric field disappears.

If the U(1) gauge field is a hidden photon, then it behaves as extra radiation and contributes to

the e↵ective extra relativistic degrees of freedom of the universe via

�NA =
8

7

✓

11

4

◆

4/3 ⇢A
⇢�

, (2.9)

with ⇢� being the energy density in the SM photon. With this expression in mind, we can parame-

terize the amplitude of the dot product of the electric and magnetic fields as

�NE·B ⌘ 8

7

✓

11

4

◆

4/3 |EµB
µ|

⇢�
 �NA . 10�1, (2.10)

where the first inequality arises from (2.8) and is saturated for maximally helical fields. The second

inequality shows the current constraint on extra radiation from CMB measurements [30]. After the

electron-positron annihilation, the SM photon energy density redshifts as ⇢� / a�4. Hence if E · B
also redshifts in a radiation-like manner of E ·B / a�4, then �NE·B is time-independent.2 However

E ·B can also exhibit other redshifting behaviors, depending on how the helical fields were originally

produced.

In the following analyses we assume the helical electromagnetic fields to have been coherently

produced in the early universe, and discuss their consequence for axions. A toy example of a gauge

field theory that produces helical fields is discussed in Appendix A, where we also analyze the

redshifting behaviors of the helical fields after being produced.

2.2 Induced Axion Velocity

Upon solving the equation of motion (2.5), let us for the moment ignore the axion potential, namely,

we set m = 0. We further suppose that the background universe has a constant equation of state w,

and that FF̃ is homogeneous and redshifts with some power of the scale factor,

H / a�
3(w+1)

2 , F F̃ / a�n. (2.11)

Then the equation of motion (2.5) can be solved to yield the axion velocity as

✓̇ =

⇢

�n+
3(w + 3)

2

��1 ↵

8⇡

FF̃

f2H
+Ka�3, (2.12)

2If the dot product continues to redshift as EµB
µ / a�4 until today, its present-day amplitude in Gauss (although

these are electromagnetic fields in a hidden sector) is |EµB
µ|0 ⇠ (10�6 G)2�NE·B in Heaviside–Lorentz units.

4
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4

|EµB
µ| / ⇢� / a�4If then �NE·B is time-independent !
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Conventional (vacuum) axion misalignment 

• Conventional Axion misalignment — coherent 
initial displacement from its minimum 

• Axion produced via misalignment behave as 
cold dark matter once the field starts oscillating 
around the minimum



Rajeev Kumar Jain                                                                                                 Axions and helical magnetic fields

Conventional axion dynamics
• The axion field stays frozen at some initial value while 

H > m, then begins to oscillate about the potential 
minimum when H ~ m.

• The energy density of the axion at the onset of the 
oscillation is 

2.3 Backreaction from the Axion

The axion can backreact to the gauge field, as a rolling axion itself induces excitation of the coupled

gauge field. The e↵ect becomes significant when the factor in front of FF̃ in the action (2.1) varies

by a factor of order unity or larger within a Hubble time [10–13]. This condition can be written,

using (2.15), as
�

�

�

�

�

↵

8⇡

✓̇

H

�

�

�

�

�

⇠
⇣ ↵

8⇡

⌘

2 |FF̃ |
f2H2

> 1. (2.17)

This is equivalent to saying that the induced kinetic energy of the axion is larger than |FF̃ |. A

coherent FF̃ as large as (2.17) moves the axion rapidly in one direction, which in turn is expected

to produce gauge bosons with momenta typically of order the Hubble scale at that time. This

process should slow down the axion velocity, and also implies the cascading of the power of FF̃

towards higher momenta. A detailed study of the axion electrodynamics in such a regime will likely

require lattice studies and is beyond the scope of this work, however it would be very interesting to

investigate the possibility of the axion-induced UV cascade of helical electromagnetic fields.4

2.4 Onset of Axion Oscillation

In the conventional vacuum misalignment scenario without an FF̃ background, the axion field stays

frozen at some initial value while H > m, then begins to oscillate about a potential minimum when

H ⇠ m. Henceforth we use the subscript “m” to denote quantities at the time the Hubble rate

becomes equal to the axion mass (note that the mass may also vary in time),
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In the conventional misalignment mechanism, the axion field has a constant initial field value in the early
Universe and later begins to oscillate. We present an alternative scenario where the axion field has a
nonzero initial velocity, allowing an axion decay constant much below the conventional prediction from
axion dark matter. This axion velocity can be generated from explicit breaking of the axion shift symmetry
in the early Universe, which may occur as this symmetry is approximate.
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Introduction.—Why is CP violation so suppressed in the
strong interaction [1–3] while near maximal in the weak
interaction? The Peccei-Quinn (PQ) mechanism [4,5]
provides a simple and elegant answer: the angular param-
eter describing CP violation in the strong interaction is
actually a field resulting from spontaneous symmetry
breaking, θðxÞ. A potential VðθÞ arises from the strong
interaction and has CP conserving minima, as shown in
Fig. 1. Axions are fluctuations in this field [6,7] and the
mass of the axion is powerfully constrained by particle and
astrophysics, ma < 60 meV; equivalently, there is a lower
bound on the PQ symmetry breaking scale fa ¼ 108 GeV
(60 meV=ma) [8–14].
In the early Universe, if the initial value of the field, θi, is

away from the minima, the axion field starts to oscillate at a
temperature T$ when ma ∼ 3H, where H is the Hubble
expansion rate. These oscillations, illustrated in the upper
diagram of Fig. 1, can account for the observed dark matter
[15–17]. For θi not accidentally close to the bottom nor the
hilltop of the potential, this “misalignment” mechanism
predicts an axion mass of order 10 μeV and tends to
underproduce for heavier masses.
In this Letter we show that an alternative initial condition

for the axion field, _θ ≠ 0, leads to axion dark matter for
larger values of ma. This “kinetic misalignment” mecha-
nism is operative if the axion kinetic energy is larger than
the potential energy at temperature T$, delaying the onset
of axion field oscillations, as shown in the lower diagram of
Fig. 1. We begin with an elaboration of the basic

mechanism. We then show that a sufficient _θ can arise
at early times from explicit breaking of the PQ symmetry
by a higher dimensional operator in the same manner as the
Affleck-Dine mechanism, which generates rotations of
complex scalar fields [18,19].
The PQ symmetry is an approximate symmetry which is

explicitly broken by the strong interaction. It is plausible
that higher dimensional operators also explicitly break the
PQ symmetry. Although they should be negligible in the
vacuum in order not to shift the axion minimum from the
CP conserving one, they can be effective in the early
Universe if the PQ symmetry breaking field takes a large
initial value. Higher dimensional PQ-breaking operators
are in fact expected if one tries to understand the PQ
symmetry as an accidental symmetry arising from some
exact symmetries [20–23]. The kinetic misalignment
mechanism is therefore a phenomenological prediction

i

V( )

i = 0

Misalignment Mechanism

V( )

i

Kinetic Misalignment Mechanism

FIG. 1. The schematics of the (kinetic) misalignment mecha-
nism. Initial conditions are labeled, shadings from light to dark
indicate the time sequence of the motion, and arrows with
different relative lengths denote instantaneous velocities.
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• A new set of initial conditions — both the field and it 
velocity are non-zero ! 

• Larger axion DM abundance for larger m 

• A sufficient velocity may arise from the explicit breaking 
of the axion shift symmetry in the early universe
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violates unitarity of the saxion self-interaction, while the
purple region is excluded since the duration of the neutrino
emission in a supernova core is altered by the emission of
axions [8–14] or saxions [67]. In the orange region, the
conventional misalignment mechanism instead is operative
since Yθ < Ycrit from Eqs. (9) and (10). The axion
abundance is enhanced for larger Si, but Si cannot exceed
the Planck scale, giving an upper bound on fa based on
Eqs. (10) and (15)

fa ≲ 109 GeVϵ2
!
TeV
mS

"
; ð16Þ

corresponding to the blue line in Fig. 2 for ϵ ¼ 1 and gets
stronger if dilution due to entropy production is present.
The energy density of the saxion must be depleted to

avoid cosmological disaster, e.g., excessive dark radiation
from the decay to axions. The saxion can be thermalized by
scattering with gluons and with fermions ψ via a Yukawa
coupling yPψψ̄ . The interaction rate with the gluons and
fermions is suppressed for larger fa. The scattering with
gluons (fermions) can successfully deplete the saxion in the
region below the positively sloped segment of the gray
dashed line (gray boundary) in Fig. 2. We present the
rigorous examination of the thermalization constraints in
the Supplemental Material [56]. A wide range of fa ≲
1011 GeV is possible between such gray lines and the blue
line from Eq. (16).
A sufficient amount of QCD axion dark matter requires

that mS and hence the quartic coupling are small; namely
the potential of P is flat. This is because a late start of the
oscillation of P enhances the charge to entropy ratio.
Supersymmetric models.—The kinetic misalignment

mechanism benefits from supersymmetry, where symmetry
breaking fields naturally have flat potentials.

We consider the case where the saxion has a nearly
quadratic potential with a typical mass mS. This is the case
for (1) a model with global symmetry breaking by dimen-
sional transmutation due to the renormalization group
running of the soft mass [68],

V ¼ m2
SjPj2

!
ln
2jPj2

f2ϕ
− 1

"
; ð17Þ

(2) a two-field model with soft masses,

W ¼ XðPP̄ − V2
PÞ; Vsoft ¼ m2

PjPj2 þm2
P̄jP̄j

2; ð18Þ

where X is a chiral multiplet whose F term fixes the global
symmetry breaking fields P and P̄ along the moduli space
PP̄ ¼ V2

P, and (3) global symmetry breaking by quantum
corrections in gauge mediation [69–71].
For a nearly quadratic potential, the rotation of P can

occur in the same manner as the rotation of scalars in
Affleck-Dine baryogenesis [18,19]. In the early Universe P
may obtain a negative mass term by a Planck scale-
suppressed coupling to the total energy density,

V ¼ −cHH2jPj2; ð19Þ

where H is the Hubble scale and cH is an Oð1Þ constant.
For H > mS, the saxion is driven to a large field value.
We consider explicit global symmetry breaking by a

higher dimensional superpotential,

W ¼ Pnþ1

Mn−2 : ð20Þ

The F-term potential from Eq. (20) stabilizes the saxion
S≡ ffiffiffi

2
p

jPj against the negative Hubble induced mass. The
saxion tracks the minimum of the potential [19,72]

SðHÞ ≃ ðH2M2n−4Þ 1
2n−2: ð21Þ

Once H drops below mS, the saxion begins to oscillate.
Meanwhile, the supersymmetry breaking A-term potential
associated with Eq. (20)

V ≃ ðnþ 1ÞA Pnþ1

Mn−2 þ H:c:; ð22Þ

breaks the global symmetry explicitly, inducing the rotation
of P. Here A is of order the gravitino mass in gravity
mediation. According to Eq. (12), the asymmetry at the
onset of the rotation is

nθ ≃ ASðmSÞ2; ð23Þ

if the initial phase is not accidentally aligned with the
minimum. At a large field value, the saxion mass tends to be
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FIG. 2. The parameter space of the QCD axion decay constant
fa (or mass ma) and the saxion vacuum massmS compatible with
the observed dark matter abundance. The blue line excludes high
mS for the quartic potential. Applicable to both quartic and
quadratic potentials, the gray region is ruled out for a maximal
thermalization rate, while the constraint is the gray dashed line for
thermalization via gluons only.
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Even if an electric field composed of the SM photons (or hypercharge gauge bosons) is produced

in the early universe, it gets shorted out during the reheating epoch as the conductivity of the

universe rises, after which FF̃ also vanishes. (For a discussion on the evolution of the conductivity,

see e.g. [7].) However, SM electric fields may still survive until rather late times, if the reheating

temperature is low, and also if the decay of the inflaton happens abruptly as in some models of

preheating [29] instead of gradually through a perturbative decay. On the other hand, primordial

electric fields composed of hidden photons that are decoupled from the SM remain intact during

reheating, unless particles charged under the hidden U(1) are also produced. In the following we

will mainly consider helical electromagnetic fields composed of hidden photons, however the analyses

will also apply to the SM photon until the time when the electric field disappears.

If the U(1) gauge field is a hidden photon, then it behaves as extra radiation and contributes to

the e↵ective extra relativistic degrees of freedom of the universe via

�NA =
8

7

✓

11

4

◆

4/3 ⇢A
⇢�

, (2.9)

with ⇢� being the energy density in the SM photon. With this expression in mind, we can parame-

terize the amplitude of the dot product of the electric and magnetic fields as

�NE·B ⌘ 8

7

✓

11

4

◆

4/3 |EµB
µ|

⇢�
 �NA . 10�1, (2.10)

where the first inequality arises from (2.8) and is saturated for maximally helical fields. The second

inequality shows the current constraint on extra radiation from CMB measurements [30]. After the

electron-positron annihilation, the SM photon energy density redshifts as ⇢� / a�4. Hence if E · B
also redshifts in a radiation-like manner of E ·B / a�4, then �NE·B is time-independent.2 However

E ·B can also exhibit other redshifting behaviors, depending on how the helical fields were originally

produced.

In the following analyses we assume the helical electromagnetic fields to have been coherently

produced in the early universe, and discuss their consequence for axions. A toy example of a gauge

field theory that produces helical fields is discussed in Appendix A, where we also analyze the

redshifting behaviors of the helical fields after being produced.

2.2 Induced Axion Velocity

Upon solving the equation of motion (2.5), let us for the moment ignore the axion potential, namely,

we set m = 0. We further suppose that the background universe has a constant equation of state w,

and that FF̃ is homogeneous and redshifts with some power of the scale factor,

H / a�
3(w+1)

2 , F F̃ / a�n. (2.11)

Then the equation of motion (2.5) can be solved to yield the axion velocity as

✓̇ =

⇢

�n+
3(w + 3)

2

��1 ↵

8⇡

FF̃

f2H
+Ka�3, (2.12)

2If the dot product continues to redshift as EµB
µ / a�4 until today, its present-day amplitude in Gauss (although

these are electromagnetic fields in a hidden sector) is |EµB
µ|0 ⇠ (10�6 G)2�NE·B in Heaviside–Lorentz units.
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• Background evolution

• Solution in the presence of helical EM field

• Assume that the axion is totally kicked by the helical 
fields i.e.  ignore the axion potential

where we have assumed n 6= 3(w + 3)/2, and K is an arbitrary constant. Without the source

term, i.e. FF̃ = 0, any initial velocity quickly decays away as ✓̇ / a�3 as for any massless scalar

in an expanding universe. However in the presence of an FF̃ background, the axion picks up a

contribution ✓̇ / ↵FF̃/f2H. This redshifts slower than a�3 and eventually dominates the axion

velocity if n < 3(w + 3)/2, which is satisfied, e.g., with n = 4 in a decelerating universe.3

The assumption of a negligible axion potential is justified if, in the equation of motion (2.5), the

tilt of the FF̃ -induced linear potential is larger than that of the axion potential. This condition is

written under |sin ✓| ⇠ 1 as
�

�

�

�

�

↵

8⇡

FF̃

f2

�

�

�

�

�

> m2. (2.13)

The axion potential can be neglected also if the induced kinetic energy of the axion ⇢✓ kin = f2✓̇2/2

is larger than the height of the periodic axion potential 2m2f2, i.e.,
�

�

�

�

�

↵

8⇡

FF̃

f2

�

�

�

�

�

> mH, (2.14)

where for simplicity we have assumed |n�3(w+3)/2| ⇠ 1 and K = 0 in (2.12) for the axion velocity,

and dropped order-unity factors. This condition implies that the axion is indeed able to go over the

maxima of its periodic potential.

One may wonder what happens when only one of (2.13) or (2.14) is satisfied. In the case of

mH < |↵FF̃/8⇡f2| < m2 (which necessarily entails H < m), the time it takes for the axion to

move over the period of its potential �t = 2⇡/|✓̇| with velocity |✓̇| ⇠ |↵FF̃/8⇡f2H|, is shorter than
the oscillation period 2⇡/m along the axion potential. This suggests that by averaging over a time

interval shorter than 2⇡/m, the axion potential in the equation of motion vanishes, i.e. hm2 sin ✓i ⇡ 0,

and thus it can be neglected. On the other hand if m2 < |↵FF̃/8⇡f2| < mH, the axion moves less

than 2⇡ in a Hubble time; in this case the axion moves with velocity |✓̇| ⇠ |↵FF̃/8⇡f2H| but is

trapped in a potential well over cosmological time scales.

Thus in summary, a coherent FF̃ background sources an axion velocity of

|✓̇| ⇠

�

�

�

�

�

↵
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f2H

�

�

�

�

�

, (2.15)

given that its amplitude is as large as
�

�
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↵

8⇡

FF̃

f2

�
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�

�

�

> min.{m2,mH}. (2.16)

3In the main part of the work [15], electric fields are considered to be zero and so is FF̃ , and hence they make no

mention of the specific solution |✓̇| ⇠ |↵FF̃/8⇡f2H|. The problem with their analysis is that they fix the integration

constant by hand such that it depends on the magnetic helicity HB as K / ↵HB/f
2. In this way they arrive at the

incorrect conclusion that an axion velocity is induced by helical magnetic fields alone. They further argue that the

relic abundance of the QCD axion depends linearly on the magnetic helicity, however we show in Section 3.2 that it

actually depends on the amplitude of E ·B with fractional powers.
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incorrect conclusion that an axion velocity is induced by helical magnetic fields alone. They further argue that the

relic abundance of the QCD axion depends linearly on the magnetic helicity, however we show in Section 3.2 that it

actually depends on the amplitude of E ·B with fractional powers.
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where we have assumed n 6= 3(w + 3)/2, and K is an arbitrary constant. Without the source

term, i.e. FF̃ = 0, any initial velocity quickly decays away as ✓̇ / a�3 as for any massless scalar

in an expanding universe. However in the presence of an FF̃ background, the axion picks up a

contribution ✓̇ / ↵FF̃/f2H. This redshifts slower than a�3 and eventually dominates the axion

velocity if n < 3(w + 3)/2, which is satisfied, e.g., with n = 4 in a decelerating universe.3
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and thus it can be neglected. On the other hand if m2 < |↵FF̃/8⇡f2| < mH, the axion moves less

than 2⇡ in a Hubble time; in this case the axion moves with velocity |✓̇| ⇠ |↵FF̃/8⇡f2H| but is

trapped in a potential well over cosmological time scales.

Thus in summary, a coherent FF̃ background sources an axion velocity of

|✓̇| ⇠

�

�

�

�

�

↵

8⇡

FF̃

f2H

�

�

�

�

�

, (2.15)

given that its amplitude is as large as
�

�

�

�

�

↵

8⇡

FF̃

f2

�

�

�

�

�

> min.{m2,mH}. (2.16)

3In the main part of the work [15], electric fields are considered to be zero and so is FF̃ , and hence they make no

mention of the specific solution |✓̇| ⇠ |↵FF̃/8⇡f2H|. The problem with their analysis is that they fix the integration

constant by hand such that it depends on the magnetic helicity HB as K / ↵HB/f
2. In this way they arrive at the

incorrect conclusion that an axion velocity is induced by helical magnetic fields alone. They further argue that the

relic abundance of the QCD axion depends linearly on the magnetic helicity, however we show in Section 3.2 that it

actually depends on the amplitude of E ·B with fractional powers.

5

• Finally, the condition for ignoring the axion potential 
becomes

where we have assumed n 6= 3(w + 3)/2, and K is an arbitrary constant. Without the source

term, i.e. FF̃ = 0, any initial velocity quickly decays away as ✓̇ / a�3 as for any massless scalar

in an expanding universe. However in the presence of an FF̃ background, the axion picks up a

contribution ✓̇ / ↵FF̃/f2H. This redshifts slower than a�3 and eventually dominates the axion

velocity if n < 3(w + 3)/2, which is satisfied, e.g., with n = 4 in a decelerating universe.3

The assumption of a negligible axion potential is justified if, in the equation of motion (2.5), the

tilt of the FF̃ -induced linear potential is larger than that of the axion potential. This condition is

written under |sin ✓| ⇠ 1 as
�

�

�

�

�

↵

8⇡

FF̃

f2

�

�

�

�

�

> m2. (2.13)

The axion potential can be neglected also if the induced kinetic energy of the axion ⇢✓ kin = f2✓̇2/2

is larger than the height of the periodic axion potential 2m2f2, i.e.,
�

�

�

�

�

↵

8⇡

FF̃

f2

�

�

�

�

�

> mH, (2.14)

where for simplicity we have assumed |n�3(w+3)/2| ⇠ 1 and K = 0 in (2.12) for the axion velocity,

and dropped order-unity factors. This condition implies that the axion is indeed able to go over the

maxima of its periodic potential.

One may wonder what happens when only one of (2.13) or (2.14) is satisfied. In the case of

mH < |↵FF̃/8⇡f2| < m2 (which necessarily entails H < m), the time it takes for the axion to

move over the period of its potential �t = 2⇡/|✓̇| with velocity |✓̇| ⇠ |↵FF̃/8⇡f2H|, is shorter than
the oscillation period 2⇡/m along the axion potential. This suggests that by averaging over a time

interval shorter than 2⇡/m, the axion potential in the equation of motion vanishes, i.e. hm2 sin ✓i ⇡ 0,

and thus it can be neglected. On the other hand if m2 < |↵FF̃/8⇡f2| < mH, the axion moves less

than 2⇡ in a Hubble time; in this case the axion moves with velocity |✓̇| ⇠ |↵FF̃/8⇡f2H| but is

trapped in a potential well over cosmological time scales.

Thus in summary, a coherent FF̃ background sources an axion velocity of

|✓̇| ⇠

�

�

�

�

�

↵

8⇡

FF̃

f2H

�

�

�

�

�

, (2.15)

given that its amplitude is as large as
�

�

�

�

�

↵

8⇡

FF̃

f2

�

�

�

�

�

> min.{m2,mH}. (2.16)

3In the main part of the work [15], electric fields are considered to be zero and so is FF̃ , and hence they make no

mention of the specific solution |✓̇| ⇠ |↵FF̃/8⇡f2H|. The problem with their analysis is that they fix the integration

constant by hand such that it depends on the magnetic helicity HB as K / ↵HB/f
2. In this way they arrive at the

incorrect conclusion that an axion velocity is induced by helical magnetic fields alone. They further argue that the

relic abundance of the QCD axion depends linearly on the magnetic helicity, however we show in Section 3.2 that it

actually depends on the amplitude of E ·B with fractional powers.

5

Kobayashi & RKJ, 2021



Rajeev Kumar Jain                                                                                                 Axions and helical magnetic fields

Backreaction from the axion
• The axion can backreact to the gauge field, as a 

rolling axion itself induces excitation of the coupled 
gauge field — induced kinetic energy of the axion 
should remain smaller

2.3 Backreaction from the Axion

The axion can backreact to the gauge field, as a rolling axion itself induces excitation of the coupled

gauge field. The e↵ect becomes significant when the factor in front of FF̃ in the action (2.1) varies

by a factor of order unity or larger within a Hubble time [10–13]. This condition can be written,

using (2.15), as
�

�

�

�

�

↵

8⇡

✓̇

H
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�

�

�

�

⇠
⇣ ↵

8⇡

⌘

2 |FF̃ |
f2H2

> 1. (2.17)

This is equivalent to saying that the induced kinetic energy of the axion is larger than |FF̃ |. A

coherent FF̃ as large as (2.17) moves the axion rapidly in one direction, which in turn is expected

to produce gauge bosons with momenta typically of order the Hubble scale at that time. This

process should slow down the axion velocity, and also implies the cascading of the power of FF̃

towards higher momenta. A detailed study of the axion electrodynamics in such a regime will likely

require lattice studies and is beyond the scope of this work, however it would be very interesting to

investigate the possibility of the axion-induced UV cascade of helical electromagnetic fields.4

2.4 Onset of Axion Oscillation

In the conventional vacuum misalignment scenario without an FF̃ background, the axion field stays

frozen at some initial value while H > m, then begins to oscillate about a potential minimum when

H ⇠ m. Henceforth we use the subscript “m” to denote quantities at the time the Hubble rate

becomes equal to the axion mass (note that the mass may also vary in time),

Hm = mm. (2.18)

The energy density of the axion at the onset of the oscillation is

⇢✓m = b (m2f2✓2)m, (2.19)

where the cosine potential has been expanded around zero assuming |✓m| . 1, and b is a factor of

order unity. From then on, the axion oscillates and its particle number is conserved, so the physical

number density n✓ = ⇢✓/m redshifts as a�3. The relic abundance today is thus obtained as

⇢✓0 = m
0

n✓0 = bm
0

mmf2✓2m

✓

am
a
0

◆

3

, (2.20)

where the subscript “0” is used to denote quantities in the present universe.

Now, in the presence of an FF̃ background, given that both H/m and |FF̃/mH| monotonically

decrease in time, there are two possible scenarios. The first is the case where the condition (2.16)

is never satisfied after the time of H = m. It may have been satisfied while H > m, however this

merely moves the axion field prior to the onset of the oscillation. Hence the e↵ect of FF̃ can be

absorbed by a shift in the value of ✓m, and the axion’s relic abundance is given by (2.20).

4If |(↵/8⇡)(✓̇/H)| is su�ciently larger than unity during inflation, it can also generate large non-Gaussianities in

the curvature perturbation and/or violate perturbativity, see e.g. [31, 32]. We also note that, while here we discussed

the backreaction from the rolling axion, gauge field excitations may also happen during the oscillatory phase [33, 34].
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decrease in time, there are two possible scenarios. The first is the case where the condition (2.16)

is never satisfied after the time of H = m. It may have been satisfied while H > m, however this

merely moves the axion field prior to the onset of the oscillation. Hence the e↵ect of FF̃ can be

absorbed by a shift in the value of ✓m, and the axion’s relic abundance is given by (2.20).

4If |(↵/8⇡)(✓̇/H)| is su�ciently larger than unity during inflation, it can also generate large non-Gaussianities in

the curvature perturbation and/or violate perturbativity, see e.g. [31, 32]. We also note that, while here we discussed

the backreaction from the rolling axion, gauge field excitations may also happen during the oscillatory phase [33, 34].
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Axion dynamics — numerical

The story is drastically modified if the condition (2.16) continues to hold after the time ofH = m,

namely, if
�

�

�

�

�

↵

8⇡

(FF̃ )m
f2

�

�

�

�

�

> m2

m. (2.21)

In this case the axion continues to move in one direction with the velocity (2.15) even at times when

H < m, until the condition (2.16) is saturated when |↵FF̃/8⇡f2| becomes equal to mH; we denote

quantities then by the subscript “tr”, namely,
�

�

�

�

�

↵

8⇡

(FF̃ )
tr

f2

�

�

�

�

�

= (mH)
tr

. (2.22)

At this time the axion’s kinetic and potential energies become comparable, and hence the axion

gets trapped in its potential well and begins to oscillate about a minimum. Supposing that upon

trapping the axion field is displaced from the nearest potential minimum by |✓
tr

� ✓
min

| ⇠ 1, the

axion’s energy density is written as

⇢✓ tr = cm2

tr

f2, (2.23)

with c being a factor of order unity. Hereafter we can follow the same steps as for the conventional

misalignment scenario, and obtain the relic abundance as

⇢✓0 = cm
0

m
tr

f2

✓

a
tr

a
0

◆

3

. (2.24)

Comparing this result with (2.20), one sees that the net e↵ect of an FF̃ background satisfying (2.21)

is to enhance the axion relic abundance by delaying the onset of the oscillation from when H ⇠ m

to the time of trapping described by (2.22).

We should remark that the approximation (2.24) with c ⇠ 1 can break down if the coe�cient

|n � 3(w + 3)/2|�1 in (2.12) that we have dropped is much larger (smaller) than unity; in such

cases the time of the trapping will deviate from (2.22), leading to an enhancement (suppression) of

the final abundance. In addition, if |✓
tr

� ✓
min

| ⇡ ⇡, then the relic abundance will be enhanced by

anharmonic e↵ects [35,36] (the same is true for the expression (2.20) for the conventional scenario).

2.5 Numerical Example

We verified the axion dynamics discussed above by numerically solving the equation of motion (2.5),

whose results are shown in Figure 1. Here we have set the background Hubble parameter and helical

fields to redshift following the form of (2.11), with powers w = 1/3 and n = 4. We took the axion

mass to be a constant, and started the computation from the time when H = 103m, with an initial

condition ✓
ini

= 1 and velocity (2.12) with K = 0. The time evolution of the axion field is shown in

the left panel as a function of a/am, in log-linear scale. Here we have limited the displayed range

to �⇡  ✓  ⇡ by identifying the points ✓ = ±⇡, so that the minimum around which the axion

eventually oscillates is ✓ = 0. Shown are three cases in which the FF̃ amplitude, parameterized as

Rm =

�

�

�

�

�

↵

8⇡

(FF̃ )m
m2f2

�

�

�

�

�

, (2.25)
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Comoving axion number density 

• Comoving axion number density

Figure 1: Left: Time evolution of the axion angle as a function of the scale factor, in log-linear scale. The
upper and lower edges are identified. The amplitude of FF̃ is varied, in terms of the normalized quantity (2.25),
as Rm ⌧ 0.1 (black curve), Rm = 0.3 (orange), and Rm = 10 (red). The dot-dashed vertical line shows when
a = am, and the red dashed vertical line is a = atr for Rm = 10. When FF̃ is su�ciently large, the axion is
forced to move through multiple periods, and the onset of the axion oscillation is delayed. Right: Normalized
comoving number density of the axion in the asymptotic future, as a function of Rm. The blue dots show the
numerical results, while the black dashed and red solid lines show analytic estimates. See the text for details.

is chosen as Rm ⌧ 0.1 (black curve), Rm = 0.3 (orange), and Rm = 10 (red). This parameterization

is introduced such that the condition (2.21) corresponds to Rm > 1. The results displayed in this

subsection are independent of the exact values of ↵FF̃ , m, f , etc. However we note that we have

chosen the sign as ↵FF̃ > 0, which forces the axion to move towards the positive direction. For

Rm ⌧ 0.1, it is seen that the e↵ect of FF̃ is negligible and the axion dynamics is the same as in

the conventional misalignment scenario, in which the axion begins to oscillate at around a = am,

indicated by the dot-dashed vertical line. For Rm = 0.3, the axion also begins oscillating at a ⇠ am,

however until the oscillation the FF̃ background forces the axion to move away from its initial

position. The case of Rm = 10 satisfies (2.21), and the axion moves through multiple periods until

the time a = a
tr

, which is indicated by the red dashed vertical line. Further increasing Rm yields an

even larger separation between am and a
tr

.

We also carried out the computations for a wide range of values for Rm; in the right panel we plot

the comoving axion number density (/ n✓a
3) evaluated after the axion has begun its oscillation and

the number become conserved, as a function of Rm (the sign is chosen as ↵FF̃ > 0). The numerical

results are shown as the blue dots, and the comoving number density in the y-axis is normalized as

ñ✓ =
n✓

mf2

✓

a

am

◆

3

. (2.26)

One can also analytically calculate this quantity using (2.20) and (2.24) with w = 1/3, n = 4, and

by setting ✓m = b = c = 1, as

ñ✓ =

(

1 for Rm < 1, (2.27)

R
6

2n�3(w+1)
m = R3/2

m for Rm � 1. (2.28)

These are shown in the plot as the black dashed and red solid lines, respectively. One sees that the
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Figure 1: Left: Time evolution of the axion angle as a function of the scale factor, in log-linear scale. The
upper and lower edges are identified. The amplitude of FF̃ is varied, in terms of the normalized quantity (2.25),
as Rm ⌧ 0.1 (black curve), Rm = 0.3 (orange), and Rm = 10 (red). The dot-dashed vertical line shows when
a = am, and the red dashed vertical line is a = atr for Rm = 10. When FF̃ is su�ciently large, the axion is
forced to move through multiple periods, and the onset of the axion oscillation is delayed. Right: Normalized
comoving number density of the axion in the asymptotic future, as a function of Rm. The blue dots show the
numerical results, while the black dashed and red solid lines show analytic estimates. See the text for details.
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position. The case of Rm = 10 satisfies (2.21), and the axion moves through multiple periods until

the time a = a
tr
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ñ✓ =
n✓

mf2

✓

a

am

◆

3

. (2.26)

One can also analytically calculate this quantity using (2.20) and (2.24) with w = 1/3, n = 4, and

by setting ✓m = b = c = 1, as
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These are shown in the plot as the black dashed and red solid lines, respectively. One sees that the
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ñ✓ ⇠ R3/2
m
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Axion relic abundance — Constant mass axion

analytic expressions with b = 1 and c = 1 are consistent at the order-of-magnitude level with the

numerical results in the asymptotic regions Rm ⌧ 1 and Rm � 1.

The oscillatory behavior of ñ✓, which is most prominent around Rm ⇠ 1, is due to the FF̃

background shifting the misalignment angle with a periodicity of 2⇡; such an e↵ect is not captured

in the analytic estimate where we have fixed the misalignment to unity for simplicity. The oscillation

peaks of ñ✓ correspond to the axion being placed near the hilltop ✓ = ±⇡ at the onset of the

oscillation, which gives anharmonic enhancements to the relic abundance. We remark that, since we

have carried out the computations only for a finite number of values of Rm, the plot does not fully

uncover the shape of the anharmonic peaks. Note also that in the extremely anharmonic region,

axionic domain walls are expected to form, and thus one will have to include spatial inhomogeneities

into the analyses. We should also mention that, as one increases Rm much beyond unity, the

backreaction from the axion will become non-negligible at Rm > 8⇡/|↵|, as can be seen from the

criteria (2.17).

3 Axion Relic Abundance

3.1 Constant-Mass Axion

As the simplest example, we begin by considering an axion whose mass m is a constant parameter.

We assume this axion to be coupled to hidden photons that make up helical electromagnetic fields.

Moreover, to make our discussion concrete, we assume the helical fields to redshift in a radiation-like

manner, i.e.,

FF̃ / a�4. (3.1)

We also suppose the universe at the time of H = m to be dominated by radiation, and the entropy

of the universe to be conserved thereafter, so that the entropy density redshifts as s / a�3. These

assumptions allow us to write (FF̃ )m = (FF̃ )
0

(sm/s
0

)4/3. Further noting that the Hubble rate and

the entropy density during radiation domination are expressed in terms of the cosmic temperature

as

3M2

Pl

H2 ' ⇢
rad

=
⇡2

30
g⇤(T )T

4, s =
2⇡2

45
g⇤s(T )T

3, (3.2)

the entropy density at H = m can be written as

sm =

✓

128⇡2

45

◆

1/4
g⇤s(Tm)

g⇤(Tm)3/4
(mM

Pl

)3/2. (3.3)

Thus the condition (2.21) for the helical fields to delay the onset of the axion oscillation is translated

into a lower bound on the field values today,
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1/3 g⇤(Tm)

g⇤s(Tm)4/3
f2s

4/3
0

M2

Pl

. (3.4)

Under this condition a
tr

> am, and hence one can also solve for s
tr

by combining (2.22), that is,
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, (3.5)
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• The condition for the helical fields to delay the onset of the 
axion oscillation is translated into a lower bound on the field 
values today as 

• The axion abundance today is with (3.2) which can be used to rewrite H
tr

in terms of s
tr

. Then substituting (a
tr

/a
0

)3 = s
0

/s
tr

into (2.24) gives
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, (3.6)

where the power 3/2 of the |↵FF̃ | term corresponds to that of Rm in the expression (2.28). We

can further rewrite |FF̃ |
0

in terms of �NE·B defined in (2.10), by noting that �NE·B becomes

constant after the electron-positron annihilation due to the assumption of FF̃ / a�4. Then, plugging

in numbers for the physical constants and cosmological parameters, and also setting c ⇠ 1 and

g⇤s/g
3/4
⇤ ⇠ 1, the axion abundance (3.6) and the condition (3.4) are written as

⌦✓h
2 ⇠ 10�1

✓

|↵|�NE·B
10�2

◆

3/2✓ f

1017GeV

◆�1

⇣ m

10�22 eV

⌘
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for |↵|�NE·B & 10�2

✓

f

1017GeV

◆

2

.

(3.7)

Here the abundance is expressed in units of the present value of the critical density, and h is the

dimensionless Hubble parameter. Here and below �NE·B is the value after the electron-positron

annihilation, and note that the axion abundance depends on the helical fields through the combina-

tion |↵|�NE·B.

On the other hand, if the amplitude of the helical fields is small enough such that (2.21) is

not satisfied, then the conventional vacuum misalignment scenario is recovered. The abundance is

computed as (2.20), giving the familiar result [37],

⌦✓h
2 ⇠ 10�1 ✓2m
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f

1017GeV

◆

2

⇣ m

10�22 eV

⌘

1/2
for |↵|�NE·B . 10�2

✓

f
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◆

2

. (3.8)

Note that if |↵|�NE·B is non-zero, the misalignment angle ✓m when the axion begins to oscillate

can be di↵erent from the value at earlier times, say, at the end of inflation.

One can collectively write the axion abundance in the two regimes (3.7) and (3.8) as:
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✓
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✓
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✓
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◆

2

)#

3/2

, (3.9)

where we have ignored the possibility of a fine-tuned initial angle and thus set ✓2m ⇠ 1 in (3.8). This

expression clearly shows that helical electromagnetic fields, when large enough, have the e↵ect of

increasing the axion abundance.

Let us also assess the backreaction from the axion to the gauge field. With FF̃ / a�4, the

ratio FF̃/H2 stays more or less constant during radiation domination, hence we evaluate the back-

reaction condition (2.17) at the time of the trapping (2.22). (Note that this condition can be satisfied

only by helical fields large enough to delay the axion oscillation, i.e. (2.21), unless |↵| exceeds 8⇡.)
Supposing FF̃ / s4/3 to hold after the trapping, and rewriting s in terms of H using (3.2), we obtain
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�
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)

|FF̃ |
0
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f2s
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0

. (3.10)
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• These two conditions together lead to
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where the power 3/2 of the |↵FF̃ | term corresponds to that of Rm in the expression (2.28). We

can further rewrite |FF̃ |
0

in terms of �NE·B defined in (2.10), by noting that �NE·B becomes

constant after the electron-positron annihilation due to the assumption of FF̃ / a�4. Then, plugging

in numbers for the physical constants and cosmological parameters, and also setting c ⇠ 1 and

g⇤s/g
3/4
⇤ ⇠ 1, the axion abundance (3.6) and the condition (3.4) are written as
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Here the abundance is expressed in units of the present value of the critical density, and h is the

dimensionless Hubble parameter. Here and below �NE·B is the value after the electron-positron

annihilation, and note that the axion abundance depends on the helical fields through the combina-

tion |↵|�NE·B.

On the other hand, if the amplitude of the helical fields is small enough such that (2.21) is

not satisfied, then the conventional vacuum misalignment scenario is recovered. The abundance is

computed as (2.20), giving the familiar result [37],
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Note that if |↵|�NE·B is non-zero, the misalignment angle ✓m when the axion begins to oscillate

can be di↵erent from the value at earlier times, say, at the end of inflation.

One can collectively write the axion abundance in the two regimes (3.7) and (3.8) as:

⌦✓h
2 ⇠ 10�1

⇣ m

10�22 eV

⌘

1/2
✓

f

1017GeV

◆�1

"

max.

(

✓

|↵|�NE·B
10�2

◆

,

✓

f

1017GeV

◆

2

)#

3/2

, (3.9)

where we have ignored the possibility of a fine-tuned initial angle and thus set ✓2m ⇠ 1 in (3.8). This

expression clearly shows that helical electromagnetic fields, when large enough, have the e↵ect of

increasing the axion abundance.

Let us also assess the backreaction from the axion to the gauge field. With FF̃ / a�4, the

ratio FF̃/H2 stays more or less constant during radiation domination, hence we evaluate the back-

reaction condition (2.17) at the time of the trapping (2.22). (Note that this condition can be satisfied

only by helical fields large enough to delay the axion oscillation, i.e. (2.21), unless |↵| exceeds 8⇡.)
Supposing FF̃ / s4/3 to hold after the trapping, and rewriting s in terms of H using (3.2), we obtain
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The story is drastically modified if the condition (2.16) continues to hold after the time ofH = m,

namely, if
�

�

�

�

�

↵

8⇡

(FF̃ )m
f2

�

�

�

�

�

> m2

m. (2.21)

In this case the axion continues to move in one direction with the velocity (2.15) even at times when

H < m, until the condition (2.16) is saturated when |↵FF̃/8⇡f2| becomes equal to mH; we denote

quantities then by the subscript “tr”, namely,
�

�

�

�

�

↵

8⇡

(FF̃ )
tr

f2

�

�

�

�

�

= (mH)
tr

. (2.22)

At this time the axion’s kinetic and potential energies become comparable, and hence the axion

gets trapped in its potential well and begins to oscillate about a minimum. Supposing that upon

trapping the axion field is displaced from the nearest potential minimum by |✓
tr

� ✓
min

| ⇠ 1, the

axion’s energy density is written as

⇢✓ tr = cm2

tr

f2, (2.23)

with c being a factor of order unity. Hereafter we can follow the same steps as for the conventional

misalignment scenario, and obtain the relic abundance as

⇢✓0 = cm
0

m
tr

f2

✓

a
tr

a
0

◆

3

. (2.24)

Comparing this result with (2.20), one sees that the net e↵ect of an FF̃ background satisfying (2.21)

is to enhance the axion relic abundance by delaying the onset of the oscillation from when H ⇠ m

to the time of trapping described by (2.22).

We should remark that the approximation (2.24) with c ⇠ 1 can break down if the coe�cient

|n � 3(w + 3)/2|�1 in (2.12) that we have dropped is much larger (smaller) than unity; in such

cases the time of the trapping will deviate from (2.22), leading to an enhancement (suppression) of

the final abundance. In addition, if |✓
tr

� ✓
min

| ⇡ ⇡, then the relic abundance will be enhanced by

anharmonic e↵ects [35,36] (the same is true for the expression (2.20) for the conventional scenario).

2.5 Numerical Example

We verified the axion dynamics discussed above by numerically solving the equation of motion (2.5),

whose results are shown in Figure 1. Here we have set the background Hubble parameter and helical

fields to redshift following the form of (2.11), with powers w = 1/3 and n = 4. We took the axion

mass to be a constant, and started the computation from the time when H = 103m, with an initial

condition ✓
ini

= 1 and velocity (2.12) with K = 0. The time evolution of the axion field is shown in

the left panel as a function of a/am, in log-linear scale. Here we have limited the displayed range

to �⇡  ✓  ⇡ by identifying the points ✓ = ±⇡, so that the minimum around which the axion

eventually oscillates is ✓ = 0. Shown are three cases in which the FF̃ amplitude, parameterized as

Rm =

�

�

�

�

�

↵

8⇡

(FF̃ )m
m2f2

�

�

�

�

�

, (2.25)
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• What if this condition is not satisfied ? 

• One then recovers the conventional vacuum misalignment 
scenario and the axion abundance is

• These two conditions collectively lead to

The story is drastically modified if the condition (2.16) continues to hold after the time ofH = m,

namely, if
�
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f2

�

�

�

�

�

> m2

m. (2.21)

In this case the axion continues to move in one direction with the velocity (2.15) even at times when

H < m, until the condition (2.16) is saturated when |↵FF̃/8⇡f2| becomes equal to mH; we denote

quantities then by the subscript “tr”, namely,
�

�

�

�

�

↵
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�

�

�

�

�

= (mH)
tr

. (2.22)

At this time the axion’s kinetic and potential energies become comparable, and hence the axion

gets trapped in its potential well and begins to oscillate about a minimum. Supposing that upon

trapping the axion field is displaced from the nearest potential minimum by |✓
tr

� ✓
min

| ⇠ 1, the

axion’s energy density is written as

⇢✓ tr = cm2

tr

f2, (2.23)

with c being a factor of order unity. Hereafter we can follow the same steps as for the conventional

misalignment scenario, and obtain the relic abundance as
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m
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✓

a
tr

a
0

◆

3

. (2.24)

Comparing this result with (2.20), one sees that the net e↵ect of an FF̃ background satisfying (2.21)

is to enhance the axion relic abundance by delaying the onset of the oscillation from when H ⇠ m

to the time of trapping described by (2.22).

We should remark that the approximation (2.24) with c ⇠ 1 can break down if the coe�cient

|n � 3(w + 3)/2|�1 in (2.12) that we have dropped is much larger (smaller) than unity; in such

cases the time of the trapping will deviate from (2.22), leading to an enhancement (suppression) of

the final abundance. In addition, if |✓
tr

� ✓
min

| ⇡ ⇡, then the relic abundance will be enhanced by

anharmonic e↵ects [35,36] (the same is true for the expression (2.20) for the conventional scenario).

2.5 Numerical Example

We verified the axion dynamics discussed above by numerically solving the equation of motion (2.5),

whose results are shown in Figure 1. Here we have set the background Hubble parameter and helical

fields to redshift following the form of (2.11), with powers w = 1/3 and n = 4. We took the axion

mass to be a constant, and started the computation from the time when H = 103m, with an initial

condition ✓
ini

= 1 and velocity (2.12) with K = 0. The time evolution of the axion field is shown in

the left panel as a function of a/am, in log-linear scale. Here we have limited the displayed range

to �⇡  ✓  ⇡ by identifying the points ✓ = ±⇡, so that the minimum around which the axion

eventually oscillates is ✓ = 0. Shown are three cases in which the FF̃ amplitude, parameterized as

Rm =

�

�

�

�

�

↵

8⇡

(FF̃ )m
m2f2
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�
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�

, (2.25)
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with (3.2) which can be used to rewrite H
tr

in terms of s
tr

. Then substituting (a
tr

/a
0

)3 = s
0

/s
tr

into (2.24) gives

⇢✓0 = c

✓

128⇡2

45

◆

1/4
g⇤s(Ttr

)

g⇤(Ttr
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�
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↵
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(FF̃ )

0

�

�

�

3/2 m1/2M
3/2
Pl

fs
0

, (3.6)

where the power 3/2 of the |↵FF̃ | term corresponds to that of Rm in the expression (2.28). We

can further rewrite |FF̃ |
0

in terms of �NE·B defined in (2.10), by noting that �NE·B becomes

constant after the electron-positron annihilation due to the assumption of FF̃ / a�4. Then, plugging

in numbers for the physical constants and cosmological parameters, and also setting c ⇠ 1 and

g⇤s/g
3/4
⇤ ⇠ 1, the axion abundance (3.6) and the condition (3.4) are written as

⌦✓h
2 ⇠ 10�1

✓

|↵|�NE·B
10�2

◆

3/2✓ f

1017GeV

◆�1

⇣ m

10�22 eV

⌘

1/2

for |↵|�NE·B & 10�2

✓

f

1017GeV

◆

2

.

(3.7)

Here the abundance is expressed in units of the present value of the critical density, and h is the

dimensionless Hubble parameter. Here and below �NE·B is the value after the electron-positron

annihilation, and note that the axion abundance depends on the helical fields through the combina-

tion |↵|�NE·B.

On the other hand, if the amplitude of the helical fields is small enough such that (2.21) is

not satisfied, then the conventional vacuum misalignment scenario is recovered. The abundance is

computed as (2.20), giving the familiar result [37],

⌦✓h
2 ⇠ 10�1 ✓2m

✓

f

1017GeV

◆

2

⇣ m

10�22 eV

⌘

1/2
for |↵|�NE·B . 10�2

✓

f

1017GeV

◆

2

. (3.8)

Note that if |↵|�NE·B is non-zero, the misalignment angle ✓m when the axion begins to oscillate

can be di↵erent from the value at earlier times, say, at the end of inflation.

One can collectively write the axion abundance in the two regimes (3.7) and (3.8) as:
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✓
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2

)#

3/2

, (3.9)

where we have ignored the possibility of a fine-tuned initial angle and thus set ✓2m ⇠ 1 in (3.8). This

expression clearly shows that helical electromagnetic fields, when large enough, have the e↵ect of

increasing the axion abundance.

Let us also assess the backreaction from the axion to the gauge field. With FF̃ / a�4, the

ratio FF̃/H2 stays more or less constant during radiation domination, hence we evaluate the back-

reaction condition (2.17) at the time of the trapping (2.22). (Note that this condition can be satisfied

only by helical fields large enough to delay the axion oscillation, i.e. (2.21), unless |↵| exceeds 8⇡.)
Supposing FF̃ / s4/3 to hold after the trapping, and rewriting s in terms of H using (3.2), we obtain
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FF̃
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�
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. (3.10)
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where the power 3/2 of the |↵FF̃ | term corresponds to that of Rm in the expression (2.28). We

can further rewrite |FF̃ |
0

in terms of �NE·B defined in (2.10), by noting that �NE·B becomes

constant after the electron-positron annihilation due to the assumption of FF̃ / a�4. Then, plugging

in numbers for the physical constants and cosmological parameters, and also setting c ⇠ 1 and

g⇤s/g
3/4
⇤ ⇠ 1, the axion abundance (3.6) and the condition (3.4) are written as
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Here the abundance is expressed in units of the present value of the critical density, and h is the

dimensionless Hubble parameter. Here and below �NE·B is the value after the electron-positron

annihilation, and note that the axion abundance depends on the helical fields through the combina-

tion |↵|�NE·B.

On the other hand, if the amplitude of the helical fields is small enough such that (2.21) is

not satisfied, then the conventional vacuum misalignment scenario is recovered. The abundance is

computed as (2.20), giving the familiar result [37],
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Note that if |↵|�NE·B is non-zero, the misalignment angle ✓m when the axion begins to oscillate

can be di↵erent from the value at earlier times, say, at the end of inflation.

One can collectively write the axion abundance in the two regimes (3.7) and (3.8) as:
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, (3.9)

where we have ignored the possibility of a fine-tuned initial angle and thus set ✓2m ⇠ 1 in (3.8). This

expression clearly shows that helical electromagnetic fields, when large enough, have the e↵ect of

increasing the axion abundance.

Let us also assess the backreaction from the axion to the gauge field. With FF̃ / a�4, the

ratio FF̃/H2 stays more or less constant during radiation domination, hence we evaluate the back-

reaction condition (2.17) at the time of the trapping (2.22). (Note that this condition can be satisfied

only by helical fields large enough to delay the axion oscillation, i.e. (2.21), unless |↵| exceeds 8⇡.)
Supposing FF̃ / s4/3 to hold after the trapping, and rewriting s in terms of H using (3.2), we obtain
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Figure 2: Window of constant-mass axions in the presence of helical electromagnetic fields. Axes are the
axion decay constant and mass, and the amplitude of the helical fields are taken as |↵|�NE·B = 10�10 (left
panel), 10�5 (right). The axion makes up the entire dark matter density on the black dashed line. The helical
fields enhance the axion abundance on the left side of the red solid line, and overproduces axion dark matter
in the red region. The blue region shows where axion dark matter is overproduced in the conventional vacuum
misalignment scenario, unless the misalignment angle is tuned. Backreactions from the axion to the helical
fields are non-negligible on the left side of the purple dotted (dot-dashed) lines for |↵| = 10�4 (10�2).

Using this and setting g
4/3
⇤s /g⇤ ⇠ 1, one finds that the backreaction is non-negligible if

↵2�NE·B &
✓

f

1017GeV

◆

2

. (3.11)

Note that the strength of backreaction depends on ↵2�NE·B, while the axion abundance is set by

↵�NE·B.

In Figure 2, we show the axion window in terms of f and m. The left panel is the case with

|↵|�NE·B = 10�10, and the right is |↵|�NE·B = 10�5. The lower edge of the blue region shows the

parameter combinations in the conventional misalignment scenario (cf. (3.8)) for which an axion

makes up the entire dark matter abundance, i.e. ⌦✓h
2 ⇡ 0.1, with an initial angle |✓m| ⇡ 1. Inside

the blue region, the axion gives too much dark matter in the universe, unless the initial angle takes

fine-tuned values of |✓m| ⌧ 1 (the “anthropic window”). The condition of (2.21) is satisfied in

the left side of the red solid line, where the onset of the axion oscillation is delayed by the helical

electromagnetic fields and thus the relic abundance is given by (3.7). Here, ⌦✓h
2 ⇡ 0.1 is realized

on the lower edge of the red region, while inside the red region axion dark matter is overproduced.

The parameter window a↵ected by the helical fields expands to larger f with increasing |↵|�NE·B.

Putting together the regions a↵ected/una↵ected by the helical fields, the black dashed line shows

where ⌦✓h
2 ⇡ 0.1 without a fine-tuned initial condition. However we should remark that the

backreaction from the axion to the helical fields becomes non-negligible, i.e. (3.11), on the left

11

Constant mass axion window in the presence of helical EM fields

Too much 
dark matter !



Rajeev Kumar Jain                                                                                                 Axions and helical magnetic fields

�� �� �� ��

���

���

���

��

��	��� � � 
�� �

��
� �
��
�

�
��

�
anthropic regime
 

overproduction
 by

 

|↵|�NE·B = 10�5

Constant mass axion window in the presence of helical EM fields

Allowed window of constant mass axion 



Rajeev Kumar Jain                                                                                                 Axions and helical magnetic fields

QCD axion

side of the purple dotted line for |↵| = 10�4, and the purple dot-dashed line for |↵| = 10�2. (For

these values of |↵|, the choices of |↵|�NE·B in the plots imply �NE·B  10�1, being compatible

with the observational constraint (2.10) on extra radiation. The rate of decay of the axion into

hidden photons via (↵/8⇡)✓FF̃ is also small such that the axion lifetime is longer than the age of
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larger, the strong-backreaction region spreads towards larger f . Here the axion is expected to induce

a UV cascading of the helical fields and thus the calculation (3.7) of the abundance may become

invalid.5 We also note that in the plots we have used the order-of-magnitude estimates (3.7) and

(3.8), which ignore the possibility of the initial misalignment angle and |↵|FF̃ conspiring to give

anharmonic enhancements of the axion abundance, as depicted by the oscillation peaks in the right

panel of Figure 1. This e↵ect can further transform the axion window.

Let us also comment on the implication for ultralight axion dark matter [37, 38] with m .
10�21 eV, which is constrained by studies of the Lyman-↵ forest [39–41] and galaxy rotation curves [42].

For axions in this mass regime to make up most of the dark matter, the conventional misalignment

scenario requires f & 1017GeV. However with an FF̃ background, axions with much smaller decay

constants can also account for ultralight dark matter and leave distinct signatures in the small-scale

structures of the universe.

3.2 QCD Axion

We now study the impact of an FF̃ background on the QCD axion [1–3], whose mass depends on

the cosmic temperature approximately as
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m
0

⇡ 6⇥ 10�6 eV

✓

1012GeV

f

◆

. (3.13)

Let us again suppose the helical fields to be composed of hidden photons with a redshifting

behavior FF̃ / a�4, and that the universe becomes radiation-dominated by the time when H = m.

The calculations can be carried out similarly to the previous section, except for that now the axion

mass also varies in time. We focus on axions with decay constants of f . 1017GeV, for which

the Hubble rate becomes equal to the axion mass at temperatures Tm & ⇤
QCD

, giving m(Tm) '
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0

(⇤
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/Tm)p.

We begin by considering FF̃ whose amplitude is so large that the onset of the axion oscillation is

delayed to times when the cosmic temperature has dropped below the QCD scale, i.e. T
tr

. ⇤
QCD

.
Tm. For this case the mass is already a constant when the oscillation begins, i.e., m(T

tr

) ' m
0

, so

the relic abundance for constant-mass axions (3.7) applies by simply replacing m ! m
0

. However

the lower bound on FF̃ is now stronger, as we are imposing T
tr

. ⇤
QCD

. We slightly modify this

5The calculation may also break down when �NE·B is so large that the hidden photon and/or the axion dominate

over the SM radiation already in the early universe, hence violating our assumption of radiation domination at H = m.
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• For                   , a similar condition discussed earlier for the 

constant mass axion
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Also noting that the zero-temperature mass of the QCD axion is a function of the decay constant,

cf. (3.13), and plugging in numbers, the abundance is obtained as
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Even if FF̃ is not as large as shown in (3.15), it still impacts the QCD axion abundance as

long as it is large enough to delay the onset of the oscillation to times when H < m, namely, if
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Thus we find
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The lower bound on |↵|�NE·B is equivalent to that in (3.7), however the reference value for f has

been changed.

An even smaller FF̃ merely shifts the axion field value prior to the onset of the oscillation at

H ⇠ m, and the abundance takes the familiar expression (2.20) from the conventional misalignment

scenario [35]:
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In summary, the relic abundance of the QCD axion takes the forms (3.15), (3.17), and (3.18),

depending on the amplitude of the FF̃ background. One immediately finds that the expression (3.15)

in the large |↵|�NE·B regime gives ⌦✓h
2 & 106, indicating an overproduction of axion dark matter.

(Note that this simply implies that the axion density would be much larger than the measured value

of the critical density, but it does not mean that the axion would actually “overclose” the universe.)

We also note that the condition for significant backreaction (3.11) applies for the QCD axion in

exactly the same form, as its derivation is independent of the time evolution of the mass.

In Figure 3, we show the axion window in terms of f and |↵|�NE·B. On the left edge of the blue

region, i.e. f ⇠ 1012GeV, the axion makes up the entire dark matter abundance in the conventional
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Let us again suppose the helical fields to be composed of hidden photons with a redshifting

behavior FF̃ / a�4, and that the universe becomes radiation-dominated by the time when H = m.

The calculations can be carried out similarly to the previous section, except for that now the axion

mass also varies in time. We focus on axions with decay constants of f . 1017GeV, for which
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over the SM radiation already in the early universe, hence violating our assumption of radiation domination at H = m.
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• Even of the helical fields are not so large, it still affects the 
axion abundance if 
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)p > 1 so that m(T
tr

) ' m
0

under the expression (3.12); then by solving for
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as discussed around (3.5), one finds the bound
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Also noting that the zero-temperature mass of the QCD axion is a function of the decay constant,

cf. (3.13), and plugging in numbers, the abundance is obtained as
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Even if FF̃ is not as large as shown in (3.15), it still impacts the QCD axion abundance as

long as it is large enough to delay the onset of the oscillation to times when H < m, namely, if
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< Tm. In this case the mass continues to vary in time after the axion trapping. The
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Thus we find
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✓
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(3.17)

The lower bound on |↵|�NE·B is equivalent to that in (3.7), however the reference value for f has

been changed.

An even smaller FF̃ merely shifts the axion field value prior to the onset of the oscillation at

H ⇠ m, and the abundance takes the familiar expression (2.20) from the conventional misalignment

scenario [35]:
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✓
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In summary, the relic abundance of the QCD axion takes the forms (3.15), (3.17), and (3.18),

depending on the amplitude of the FF̃ background. One immediately finds that the expression (3.15)

in the large |↵|�NE·B regime gives ⌦✓h
2 & 106, indicating an overproduction of axion dark matter.

(Note that this simply implies that the axion density would be much larger than the measured value

of the critical density, but it does not mean that the axion would actually “overclose” the universe.)

We also note that the condition for significant backreaction (3.11) applies for the QCD axion in

exactly the same form, as its derivation is independent of the time evolution of the mass.

In Figure 3, we show the axion window in terms of f and |↵|�NE·B. On the left edge of the blue

region, i.e. f ⇠ 1012GeV, the axion makes up the entire dark matter abundance in the conventional
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Even if FF̃ is not as large as shown in (3.15), it still impacts the QCD axion abundance as

long as it is large enough to delay the onset of the oscillation to times when H < m, namely, if
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The lower bound on |↵|�NE·B is equivalent to that in (3.7), however the reference value for f has
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An even smaller FF̃ merely shifts the axion field value prior to the onset of the oscillation at

H ⇠ m, and the abundance takes the familiar expression (2.20) from the conventional misalignment

scenario [35]:

⌦✓h
2 ⇠ 10�1 ✓2m

✓

f

1012GeV

◆

7/6

for |↵|�NE·B . 10�12

✓

f

1012GeV

◆

2

. (3.18)

In summary, the relic abundance of the QCD axion takes the forms (3.15), (3.17), and (3.18),

depending on the amplitude of the FF̃ background. One immediately finds that the expression (3.15)

in the large |↵|�NE·B regime gives ⌦✓h
2 & 106, indicating an overproduction of axion dark matter.

(Note that this simply implies that the axion density would be much larger than the measured value

of the critical density, but it does not mean that the axion would actually “overclose” the universe.)

We also note that the condition for significant backreaction (3.11) applies for the QCD axion in

exactly the same form, as its derivation is independent of the time evolution of the mass.

In Figure 3, we show the axion window in terms of f and |↵|�NE·B. On the left edge of the blue

region, i.e. f ⇠ 1012GeV, the axion makes up the entire dark matter abundance in the conventional
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QCD axion
• If the helical fields are even smaller, one recovers the axion 
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been changed.
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In summary, the relic abundance of the QCD axion takes the forms (3.15), (3.17), and (3.18),

depending on the amplitude of the FF̃ background. One immediately finds that the expression (3.15)

in the large |↵|�NE·B regime gives ⌦✓h
2 & 106, indicating an overproduction of axion dark matter.

(Note that this simply implies that the axion density would be much larger than the measured value

of the critical density, but it does not mean that the axion would actually “overclose” the universe.)

We also note that the condition for significant backreaction (3.11) applies for the QCD axion in

exactly the same form, as its derivation is independent of the time evolution of the mass.

In Figure 3, we show the axion window in terms of f and |↵|�NE·B. On the left edge of the blue

region, i.e. f ⇠ 1012GeV, the axion makes up the entire dark matter abundance in the conventional
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• The relic abundance of the QCD axion crucially depends on 
the amplitude of the helical fields background. 

• The backreaction constraint remains the same even if for a 
QCD axion. 
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QCD axion window 
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Conclusions
• Axions are (beyond BSM) well motivated particles, required for solving the 

strong CP problem 

• A possible CDM candidate but must be very light — ALP — or must be 
misaligned by some mechanism   

• Interesting implications of helical magnetic fields on axions 

• Effects on the Axion abundance 

• Effects on the Axion parameters window — even for tiny magnetic fields 

• Axion to photon conversion — used for DM search — both in 
observatories and in labs  

• Cosmic birefringence — rotation of plane of polarization of photons — 
strong constraints from observations
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Future directions
• We only considered hidden U(1) gauge fields — it will be interesting to 

apply these results to non-Abelian gauge fields 

• Inhomogeneous magnetic fields — small wavelength component will 
force the axion to move differently in different Hubble patches — axion 
iso-curvature perturbations — constraints from observations 

• For non-trivial redshifting of EM fields — different than radiation — 
axion abundance would be modified 

• Spontaneous symmetry breaking before/after inflation  

• Axion-induced UV cascade of helical EM fields 

• Parity violating signatures — constraints from cosmological 
observations
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