Axions and helical magnetic fields

T. Kobayashi and RKJ, JCAP 03, 025 (2021)

Rajeev Kumar Jain

Dept. of Physics Indian Institute of Science Bangalore

IITM Weekly Cosmology meeting

भारतीय विज्ञान संस्थान

Outline of the talk

- What are Axions or Axion-like particles (ALP)?
- Axions as dark matter candidates
- Axion misalignment mechanism
 - Conventional and kinetic misalignment scenario
 - Misalignment due to helical magnetic fields
- Axion window constraints relic abundance
 - Constant mass axion
 - QCD axion
- Conclusions and future directions

What are Axions ?

- Axions or Axion-like particles are considered promising candidates for the cold dark matter
- Introduced to solve the strong CP problem of QCD theory predicts some degree of CP violation — but no experimental observation so far !
- Axion origin as a goldstone boson due to the spontaneous symmetry breaking — an additional U(1) PQ symmetry
- Similar to the Higgs mechanism axion is not exactly massless !

Dark matter candidates

Credit: G. Bertone and T. M. P. Tait

Rajeev Kumar Jain

Dark matter candidates

Rajeev Kumar Jain

Dark matter candidates

Axion dynamics

• Consider an axion coupled to a U(1) gauge field

$$\frac{\mathcal{L}}{\sqrt{-g}} = -\frac{1}{2}f^2 g^{\mu\nu}\partial_\mu\theta\partial_\nu\theta - m^2 f^2 \left(1 - \cos\theta\right) + \frac{\alpha}{8\pi}\theta F_{\mu\nu}\tilde{F}^{\mu\nu}.$$

 Global U(1) is already broken broken by the end of inflation, and continues to be broken in the post-inflationary epoch

$$f > \frac{H_{\inf}}{2\pi}, T_{\max},$$

Background metric and the equation of motion

$$ds^2 = -dt^2 + a(t)^2 dx^2, \qquad 0 = \ddot{\theta} + 3H\dot{\theta} + m^2 \sin\theta - \frac{\alpha}{8\pi} \frac{F\ddot{F}}{f^2}$$

Helical EM fields

• For visible or dark sector

$$F_{\mu\nu}\tilde{F}^{\mu\nu} = -4E_{\mu}B^{\mu},$$

$$E^{\mu} = u_{\nu}F^{\mu\nu}, \quad B^{\mu} = \frac{1}{2}\eta^{\mu\nu\rho\sigma}u_{\sigma}F_{\nu\rho}, \quad \tilde{F}^{\mu\nu} = \frac{1}{2}\eta^{\mu\nu\rho\sigma}F_{\rho\sigma}.$$

• The energy density of the EM field is

$$\rho_A = (E_{\mu}E^{\mu} + B_{\mu}B^{\mu})/2$$

$$(E_{\mu} \pm B_{\mu})(E^{\mu} \pm B^{\mu}) \ge 0$$
 $\implies |E_{\mu}B^{\mu}| \le \rho_A$

Rajeev Kumar Jain

Helical EM fields

 If the U(1) gauge field is a hidden photon, it behaves as extra radiation and contributes to the effective extra relativistic degrees of freedom of the universe

$$\Delta N_A = \frac{8}{7} \left(\frac{11}{4}\right)^{4/3} \frac{\rho_A}{\rho_\gamma},$$

• This allows us to parameterize

$$\Delta N_{E \cdot B} \equiv \frac{8}{7} \left(\frac{11}{4}\right)^{4/3} \frac{|E_{\mu}B^{\mu}|}{\rho_{\gamma}} \le \Delta N_A \lesssim 10^{-1},$$

If $|E_{\mu}B^{\mu}| \propto \rho_{\gamma} \propto a^{-4}$ then $\Delta N_{E\cdot B}$ is time-independent !

Rajeev Kumar Jain

Conventional (vacuum) axion misalignment

- Conventional Axion misalignment coherent initial displacement from its minimum
- Axion produced via misalignment behave as cold dark matter once the field starts oscillating around the minimum

Rajeev Kumar Jain

Conventional axion dynamics

- The axion field stays frozen at some initial value while H > m, then begins to oscillate about the potential minimum when H ~ m.
- The energy density of the axion at the onset of the oscillation is

$$\rho_{\theta m} = b \, (m^2 f^2 \theta^2)_m,$$

• Since this epoch, the axion oscillates and its particle number is conserved. The relic abundance today is

$$\rho_{\theta 0} = m_0 n_{\theta 0} = b \, m_0 m_m f^2 \theta_m^2 \left(\frac{a_m}{a_0}\right)^3,$$

Conventional axion dynamics

arXiv: 0910.1066

Rajeev Kumar Jain

Kinetic axion misalignment

PHYSICAL REVIEW LETTERS 124, 251802 (2020)

Axion Kinetic Misalignment Mechanism

Raymond T. Co[®],¹ Lawrence J. Hall[®],^{2,3} and Keisuke Harigaya[®]⁴ ¹Leinweber Center for Theoretical Physics, University of Michigan, Ann Arbor, Michigan 48109, USA ²Department of Physics, University of California, Berkeley, California 94720, USA ³Theoretical Physics Group, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA ⁴School of Natural Sciences, Institute for Advanced Study, Princeton, New Jersey 08540, USA

- A new set of initial conditions both the field and it velocity are non-zero !
- Larger axion DM abundance for larger m
- A sufficient velocity may arise from the explicit breaking of the axion shift symmetry in the early universe

Kinetic axion misalignment

Rajeev Kumar Jain

Axions and helical magnetic fields

Induced axion velocity from helical EM field

Background evolution

$$H \propto a^{-\frac{3(w+1)}{2}}, \quad F\tilde{F} \propto a^{-n}.$$

• Solution in the presence of helical EM field

$$\dot{\theta} = \left\{ -n + \frac{3(w+3)}{2} \right\}^{-1} \frac{\alpha}{8\pi} \frac{F\tilde{F}}{f^2 H} + Ka^{-3},$$

 Assume that the axion is totally kicked by the helical fields i.e. ignore the axion potential

$$\left|\frac{\alpha}{8\pi}\frac{F\tilde{F}}{f^2}\right| > m^2.$$

Induced axion velocity from helical EM field

• The axion potential can also be neglected if the induced kinetic energy of the axion is larger than the height of the periodic axion potential

$$\left. \frac{\alpha}{8\pi} \frac{F\tilde{F}}{f^2} \right| > mH,$$

 A coherent helical field background sources an axion velocity of

$$|\dot{\theta}| \sim \left| rac{lpha}{8\pi} rac{F\tilde{F}}{f^2 H}
ight|,$$

Finally, the condition for ignoring the axion potential becomes

$$\left. \frac{\alpha}{8\pi} \frac{F\tilde{F}}{f^2} \right| > \min\{m^2, mH\}.$$

Kobayashi & RKJ, 2021

Rajeev Kumar Jain

Backreaction from the axion

 The axion can backreact to the gauge field, as a rolling axion itself induces excitation of the coupled gauge field — induced kinetic energy of the axion should remain smaller

$$\left|\frac{\alpha}{8\pi}\frac{\dot{\theta}}{H}\right| \sim \left(\frac{\alpha}{8\pi}\right)^2 \frac{|F\tilde{F}|}{f^2 H^2} > 1.$$

- A coherent F F moves the axion rapidly in one direction expected to produce gauge bosons with momenta typically of order the Hubble scale at that time.
- In our scenario, the gauge fields are *not* produced by the helical coupling.

Axion dynamics — numerical

Rajeev Kumar Jain

Axions and helical magnetic fields

Comoving axion number density

• Comoving axion number density

$$\tilde{n}_{\theta} = \frac{n_{\theta}}{mf^2} \left(\frac{a}{a_m}\right)^3$$

• Our analytical estimates indicate the behaviour as

$$\tilde{n}_{\theta} = \begin{cases} 1 & \text{for } R_m < 1, \\ \frac{6}{R_m^{2n-3(w+1)}} = R_m^{3/2} & \text{for } R_m \ge 1. \end{cases}$$

It captures the behaviour in the asymptotic regimes.

Comoving axion number density

Rajeev Kumar Jain

Axion relic abundance — Constant mass axion

 The condition for the helical fields to delay the onset of the axion oscillation is translated into a lower bound on the field values today as

• The axion abundance today is

$$\rho_{\theta 0} = c \left(\frac{128\pi^2}{45}\right)^{1/4} \frac{g_{*s}(T_{\rm tr})}{g_*(T_{\rm tr})^{3/4}} \left|\frac{\alpha}{8\pi} (F\tilde{F})_0\right|^{3/2} \frac{m^{1/2} M_{\rm Pl}^{3/2}}{fs_0},$$

• These two conditions together lead to

$$\Omega_{\theta} h^2 \sim 10^{-1} \left(\frac{|\alpha| \Delta N_{E \cdot B}}{10^{-2}} \right)^{3/2} \left(\frac{f}{10^{17} \,\text{GeV}} \right)^{-1} \left(\frac{m}{10^{-22} \,\text{eV}} \right)^{1/2}$$

for $|\alpha| \Delta N_{E \cdot B} \gtrsim 10^{-2} \left(\frac{f}{10^{17} \,\text{GeV}} \right)^2$.

Axion relic abundance — Constant mass axion

• What if this condition is not satisfied ?

$$\left. \frac{\alpha}{8\pi} \frac{(F\tilde{F})_m}{f^2} \right| > m_m^2.$$

One then recovers the conventional vacuum misalignment scenario and the axion abundance is

$$\Omega_{\theta} h^2 \sim 10^{-1} \,\theta_m^2 \left(\frac{f}{10^{17} \,\text{GeV}}\right)^2 \left(\frac{m}{10^{-22} \,\text{eV}}\right)^{1/2} \quad \text{for } |\alpha| \Delta N_{E \cdot B} \lesssim 10^{-2} \left(\frac{f}{10^{17} \,\text{GeV}}\right)^2$$

• These two conditions collectively lead to

$$\Omega_{\theta} h^2 \sim 10^{-1} \left(\frac{m}{10^{-22} \,\mathrm{eV}}\right)^{1/2} \left(\frac{f}{10^{17} \,\mathrm{GeV}}\right)^{-1} \left[\max\left\{\left(\frac{|\alpha|\Delta N_{E \cdot B}}{10^{-2}}\right), \left(\frac{f}{10^{17} \,\mathrm{GeV}}\right)^2\right\}\right]^{3/2}$$

Allowed window of constant mass axion

Rajeev Kumar Jain

Axions and helical magnetic fields

Allowed window of constant mass axion

Constant mass axion window in the presence of helical EM fields

Rajeev Kumar Jain

QCD axion

QCD axion mass depends on the temperature

$$m(T) \simeq \begin{cases} \lambda \, m_0 \left(\frac{\Lambda_{\rm QCD}}{T} \right)^p & \text{for } T \gg \Lambda_{\rm QCD}, \\ m_0 & \text{for } T \ll \Lambda_{\rm QCD}. \end{cases}$$

• For $\Lambda_{\rm QCD} \approx 200 \,{\rm MeV}, \, \lambda \approx 0.1, \, p \approx 4,$

$$m_0 \approx 6 \times 10^{-6} \,\mathrm{eV}\left(\frac{10^{12} \,\mathrm{GeV}}{f}\right)$$

• For simplicity, we assume that $F\tilde{F} \propto a^{-4}$ and the universe become radiation dominated by H=m.

QCD axion

- For $T_{\rm tr} \lesssim \Lambda_{\rm QCD}$, a similar condition discussed earlier for the constant mass axion

$$\left|\frac{\alpha}{8\pi}(F\tilde{F})_0\right| > \frac{1}{2} \left(\frac{45}{2\pi^2}\right)^{5/6} \frac{g_*(T_{\rm tr})^{1/2}}{g_{*s}(T_{\rm tr})^{4/3}} \frac{m_0 f^2 s_0^{4/3}}{\lambda^{2/p} \Lambda_{\rm QCD}^2 M_{\rm Pl}}.$$

• The axion abundance today is

$$\Omega_{\theta} h^2 \sim 10^{-1} \left(\frac{|\alpha| \Delta N_{E \cdot B}}{10^{-11}} \right)^{3/2} \left(\frac{f}{10^{12} \,\text{GeV}} \right)^{-3/2} \quad \text{for } |\alpha| \Delta N_{E \cdot B} \gtrsim 10^{-6} \left(\frac{f}{10^{12} \,\text{GeV}} \right)$$

• Even of the helical fields are not so large, it still affects the axion abundance if $\Lambda_{\rm QCD} \lesssim T_{\rm tr} < T_m$.

$$\Omega_{\theta} h^{2} \sim 10^{-1} \left(\frac{|\alpha| \Delta N_{E \cdot B}}{10^{-12}} \right)^{7/6} \left(\frac{f}{10^{12} \,\text{GeV}} \right)^{-7/6}$$

for $10^{-12} \left(\frac{f}{10^{12} \,\text{GeV}} \right)^{2} \lesssim |\alpha| \Delta N_{E \cdot B} \lesssim 10^{-6} \left(\frac{f}{10^{12} \,\text{GeV}} \right)$

QCD axion

• If the helical fields are even smaller, one recovers the axion abundance of the conventional mechanism as

$$\Omega_{\theta} h^2 \sim 10^{-1} \, \theta_m^2 \, \left(\frac{f}{10^{12} \,\mathrm{GeV}} \right)^{7/6} \quad \text{for } |\alpha| \Delta N_{E \cdot B} \lesssim 10^{-12} \, \left(\frac{f}{10^{12} \,\mathrm{GeV}} \right)^2$$

- The relic abundance of the QCD axion crucially depends on the amplitude of the helical fields background.
- The backreaction constraint remains the same even if for a QCD axion.

QCD axion window

QCD axion window in the presence of helical EM fields

Rajeev Kumar Jain

- Axions are (beyond BSM) well motivated particles, required for solving the strong CP problem
- A possible CDM candidate but must be very light ALP or must be misaligned by some mechanism
- Interesting implications of helical magnetic fields on axions
 - Effects on the Axion abundance
 - Effects on the Axion parameters window even for tiny magnetic fields
 - Axion to photon conversion used for DM search both in observatories and in labs
 - Cosmic birefringence rotation of plane of polarization of photons strong constraints from observations

Future directions

- We only considered hidden U(1) gauge fields it will be interesting to apply these results to non-Abelian gauge fields
- Inhomogeneous magnetic fields small wavelength component will force the axion to move differently in different Hubble patches — axion iso-curvature perturbations — constraints from observations
- For non-trivial redshifting of EM fields different than radiation axion abundance would be modified
- Spontaneous symmetry breaking before/after inflation
- Axion-induced UV cascade of helical EM fields
- Parity violating signatures constraints from cosmological observations

भारतीय विज्ञान संस्थान

Thank you.

Funding Support

भारतीय विज्ञान संस्थान

