

Reconciling JWST, HST with Planck

Ruchika Kaushik (INFN, Roma)

Investigating cosmological tensions in low and

Outline of the talk \diamond

- Introducing Hubble Law
- Tension between Early and Late Universe
- How the late and early universe measurements are done?
- How and why early dark energy was proposed to be a solution to Hubble tension?
- Can early dark energy be a solution to Hubble tension?
- Moving on to Late Universe solutions
- Negative Cosmological Constant proposed as a possible solutions to cosmological tensions
- Can G-Transition in the calibrator box solve Hubble Tension?
- Final Take-away!

Introducing Hubble Law \diamond

In 1929, Edwin Hubble using 100-inch Hooker telescope at Mount Wilson discovered that the Universe is expanding.

The Hubble constant (H0) is named for astronomer Edwin Hubble. And astronomers use this value to make a variety of cosmological estimations, most critically the expansion rate and age of the universe ~ 13.8 Gyr.

・ロト ・ 同ト ・ ヨト ・ ヨト

Hubble Law \diamond

 wrong in 1929 - due to wrong zero point calibration of Standard candles (stars or galaxies).

1 ¹Contributions: Vesto Slipher and Henrietta Swan Leavitt; Lemaitre, Robertson and Alexander Friedmann ・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

Ruchika Kaushik (INFN, Roma)

Hubble Law \diamond

• The slight deviation in shape at large distances is the evidence for acceleration.

by N. A. Bahcall

Image: A matrix a

Nov 11, 2023 6

Hubble Law at comparatively larger distances \diamond

$$v = H_0 * d$$
Or
$$cz = H_0 * d_L$$

$$c = \text{speed of light}$$

$$z = \text{redshift}$$

$$d_L = \text{distance}$$

$$d_L = \frac{cz}{H_0} (1 - \frac{q_0 z}{2} + O(z^2))$$

$$q_0 = \text{deceleration parameter}$$

$$H_0 = \text{Hubble Constant}$$
Valid till
comparatively
larger distances

Nov 11, 2023 7

< 口 > < 同 > < 三 > < 三

Current state - Tensions (Hubble Tension) \diamond

Nov 11, 2023 8

< □ > < 同 > < 回 > < 回 > < 回 >

Current state - Tensions (Hubble Tension) \diamond

Current state : > 5 sigma tension between Planck and SH0ES 2022

Questions that follow: Is ACDM the right theoretical model?

Di Valentino : Mon.Not.Roy.Astron.Soc. 502 (2021)

Ruchika Kaushik (INFN, Roma)

Investigating cosmological tensions in low and

Price of shift in Hubble Constant is the shift in $r_d \diamond$

Ruchika Kaushik (INFN, Roma)

Current state - Tensions (*r*_{*d*} **Tension)** \diamond

Aylor et al. [Astrophys.J. 874 (2019)] Ruchika Kaushik (INFN, Roma)

Investigating cosmological tensions in low and

Credit: Rlake & Moorfield Nov 11, 2023

11

Another tension - $S_8 = \sigma_8 \sqrt{\Omega_m}$ Tension \diamond

Astronomy & Astrophysics manuscript no. KiDS_1000_3x2pt December 9, 2020 ©ESO 2020

12

KiDS-1000 Cosmology: Multi-probe weak gravitational lensing and spectroscopic galaxy clustering constraints

Another tension - $S_8 = \sigma_8 \sqrt{\Omega_m}$ Tension \diamond

DES-2019-0480 FERMILAB-PUB-21-253-AE

Dark Energy Survey Year 3 Results: Cosmology from Cosmic Shear and Robustness to Modeling Uncertainty

And both in disagreement with Planck

Ruchika Kaushik (INFN, Roma)

Investigating cosmological tensions in low and

New JWST Observations suggests presence of very massive galaxies at very high redshifts \diamond

A very early onset of massive galaxy formation

Ivo Labbé¹, Pieter van Dokkum², Erica Nelson³, Rachel Bezanson⁴, Katherine A. Suess^{5,6}, Joel Leja^{7,8,9}, Gabriel Brammer¹⁰, Katherine Whitaker^{10,11}, Elijah Mathews^{7,8,9}, Mauro Stefanon^{12,13}

CEERS program - NIRCam

Obeserves galaxies with stellar masses as 107 high as M ~ 10^11 Ms around z= 7.6 12 10 o. (>M.) [M₆ Mpc⁻³] stellar mass [log(M _{*}/M_o)] z~8. S21 105 104 103 102 109 1010 108 0.0 2.5 7.5 10.0 limiting M. [M. redshift [z]

Ruchika Kaushik (INFN, Roma)

Investigating cosmological tensions in low and

1011

z~10

JWST

Unlocking the Sigma Spectrum \diamond

Sigma	Their Interpretation
1σ:	Weak Evidence
2σ:	Suggestive Finding

Nov 11, 2023 15

→ ∃ →

4 1 1

Unlocking the Sigma Spectrum \diamond

Sigma	Their Interpretation	THATIS
1σ:	Weak Evidence	CORRECT!
2σ:	Suggestive Finding	
3σ:	Substantial Support	
4σ:	Strong Evidence	
5σ:	Discovery	
	and the second	0 <u>10</u> 0

Ruchika Kaushik (INFN, Roma) Investigating cosmological tensions in low and

< □ > < □ > < □ > < □ > < □ > < □ >

H0 inference from Early and Late Universe \diamond

http://www.esa.int/var/esa/storage/images/esa_multimedia/images/ 2013/03/planck_cmb/12583930-4-eng-GB/Planck_CMB_pillars.jpg How do we infer Hubble constant from CMB?

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Ruchika Kaushik (INFN, Roma) Investigating cosmological tensions in low and

< ∃⇒

H0 inference from Early and Late Universe \diamond

http://www.esa.int/var/esa/storage/images/esa_multimedia/images/ 2013/03/planck cmb/12583930-4-eng-GB/Planck CMB pillars.jpg

How do we infer Hubble constant from Late Universe (local measurements) SH0ES?

> https://mk0astronomynow9oh6g.kinstacdn.com/ wp-content/uploads/ 2018/07/071318 hubble_constant.ipg

How do we infer Hubble constant from CMB?

< □ > < □ > < □ > < □ > < □ > < □ >

Ruchika Kaushik (INFN, Roma)

Investigating cosmological tensions in low and

Early Universe: CMB \diamond

<ロト <問ト < 目と < 目と

Ruchika Kaushik (INFN, Roma) Investigating cosmological tensions in low and

Early Universe: CMB \diamond

Ruchika Kaushik (INFN, Roma) Investigating cosmological tensions in low and Nov 11, 2023 20

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣

Early Universe: CMB \diamond

Ruchika Kaushik (INFN, Roma) Investigating cosmological tensions in low and

3 Nov 11, 2023 21

イロト イヨト イヨト イヨト

Late Universe: Parallex, Cepheids and WFC3 $\,\diamond\,$

- Cepheids are pulsating stars which fade and brighten at rates that are proportional to their true brightness.
- The distances to the Cepheids using a basic geometrical technique called parallax.
- With Hubble's sharp-eyed Wide Field Camera 3 (WFC3), they extended the parallax measurements further than previously possible, across the Milky Way galaxy

< ∃ ►

Distance Ladder: Cepheids, Masers, DEBs and Supernovae-Ia ◊

Ruchika Kaushik (INFN, Roma) Investigating cosmological tensions in low and

Nov 11, 2023 23

Hubble Tension \diamond

> 5 sigma

イロト イポト イヨト イヨト

Tension between early and late measurements \diamond

Ruchika Kaushik (INFN, Roma) Investigating cosmological tensions in low and

Tension signifies Systematic Error or Hint towards New Physics? \diamond

Ruchika Kaushik (INFN, Roma) Investigating cosmological tensions in low and

New Physics Solutions: Early Type \diamond

- How Early Dark Energy was proposed to be a solution to Hubble Tension?
- Is Early Dark Energy a solution to Hubble Tension?

・ 何 ト ・ ヨ ト ・ ヨ ト

The Price of Shifting the Hubble Constant. Jarah Evslin, Anjan A Sen, Ruchika Phys. Rev. D 97,103511(2018) Question: How Early Dark Energy was proposed to be a solution to Hubble Tension?

Question : If we fix H_0 to SH0ES value, how much low-redshift data(BAO+Masers+TDSL) shifts the value of Sound Horizon at drag epoch r_d ? \diamond

Maximum Likelihood values and 1D marginalised 68% confidence intervals of parameters for respective models. Taking value of *H*₀ = 73.24 ± 1.24 Km/s/M pc.

	$\Omega_m 0$	rd	W0	wa
VCDW	0.295 ± 0.019	139.2 ± 3.2	N/A	N/A
wCDM	0.277 ± 0.027	135.3 ± 3.8	-0.76 ± 0.14	N/A
CPL	0.241 ± 0.084	136.4 ± 3.9	-0.77 ± 0.17	0.44 ± 0.53

Also, $H_0 = 136.41 \pm 3.82$ confirmed model independently by Salvatore et al.(2018).

	Planck		Loca	Measurements
H ₀	67.37 ± 0.54 Km/sec/Mpc		\Rightarrow	73.24 \pm 1.24 Km/s/M pc.
rd	$147.26\pm0.29\textit{Mpc}$	¢		$139.2 \pm 3.2 Mpc$

Answer: The shift in value of sound horizon is more than 2 σ away than Planck inferred r_d value.

Ruchika Kaushik (INFN, Roma)

Investigating cosmological tensions in low and

Nov 11, 2023 29

Interpretation: How Early Dark Energy was a proposed solution to Hubble Tension? \diamond

BAO together with measurement of H_0 by Strong Lensing and Local Distance Ladder, give r_d which is significantly smaller than that from Planck-2018 for LCDM. r_d is the Sound Horizon at drag epoch

$$r_d = \int_0^{t(zd)} c_s(1+z) dt$$

Physics: sound waves in early Universe propagate until radiation and matter decouple.

Lower r_d as compared to Planck suggets:

◇ changing z_d
 ◇ modifying the speed of sound
 ◇ changing the age of universe at drag epoch
 ◇ changing primodial fluctuations

・ロット (雪) (き) (き)

Credit: Blake & Moorfield

- Along with Hubble Tension, there is a similar tension involving sound horizon at drag epoch from low-redshift and Planck measurements.
- ♦ It does not depend on dark energy behaviour.
- ♦ Solution: One needs to modify the early Universe cosmology.

Is there an early Universe solution to Hubble tension? Chethan Krishnan, Eoin Ó Colgáin, Ruchika, Anjan A. Sen, M. M. Sheikh-Jabbari, Tao Yang Phys. Rev. D 102, 103525(2020) Question: Is Early Dark Energy a solution to Hubble Tension?

H0LiCOW XIII. A 2.4% measurement of H0 from lensed quasars \diamond

KC

23

Wong et al

33

Nov 11, 2023

Figure A1, H₀ constraints for the individual H0LiCOW lenses as a function of lens redshift (left) and time-delay distance (right). The trend of smaller H_0 value with increasing lens redshift and with increasing $D_{\Delta t}$ has significance levels of 1.9 σ and 1.8 σ , respectively.

Ruchika Kaushik (INFN, Roma) Investigating cosmological tensions in low and

If the H0LiCOW result is substantiated, Implications are as follows:

 \diamond First, this trend cannot be explained by keeping ACDM and adjusting the sound horizon using early Universe physics , since this will only raise and lower the trend

 \diamond Thus may be staring at preliminary evidence for a new cosmology at late times

<日

<</p>

Data Sets Used: \diamond

- $\bullet\,$ Isotropic BAO measurements by the 6dF survey (z = 0.106), SDSS-MGS survey (z = 0.15)
- Anisotropic BAO measurement by BOSS-DR12 at z = 0.38, 0.51, 0.61
- Angular diameter distances from megamaser hosting galaxies: UGC 3789, NGC 6264, NGC 6323, NGC 5765b, CGCG 074-064 and NGC 4258 in the range $0.002 \le z \le 0.034$
- Cosmic chronometer (CC) data for z ${\leq}0.7$
- We incorporate 924 Type Ia SNe from the Pantheon dataset in the range 0.01 < z \leq 0.7 [32], including both the statistical and systematic uncertainties.

- ロ ト ・ 同 ト ・ 三 ト ・ 三 ト - -

Constraints while taking datasets \leq 0.7 \diamond

Table: Best-fit values for cosmological parameters

$H_0 \left[\frac{\mathrm{km}}{\mathrm{s Mpc}}\right]$	Ω_m	<i>r_d</i> [Mpc]	М
$69.74\substack{+1.60\\-1.56}$	$0.30\substack{+0.02\\-0.02}$	$144.83^{+3.44}_{-3.34}$	$-19.36\substack{+0.05\\-0.05}$

♦ **If we don't do binning,** we get value of H_0 around $69.74^{+1.60}_{-1.56}$ km/sec/Mpc, So now it is conceivable that the Planck result for flat Λ CDM is an "averaged" value, which is essentially a *coarse-grained* value for H_0 .

- 4 回 ト - 4 三 ト

And then we introduce the bining! \diamond

Bin	Data
1	Masers, SNe
2	iso BAO, SNe, CC
3	SNe, CC
4-6	aniso BAO, SNe, CC

TABLE I: Summary of the data in each bin.

bin 1:	$\bar{z}_1 = 0.021 \in (0, 0.029],$
bin 2:	$\bar{z}_2 = 0.122 \in (0.029, 0.21],$
bin 3:	$\bar{z}_3 = 0.261 \in (0.21, 0.321].$
bin 4:	$\bar{z}_4 \ = \ 0.38 \in (0.321, 0.47],$
bin 5:	$\bar{z}_5 \ = \ 0.51 \in (0.47, 0.557],$
bin 6:	$\bar{z}_6 = 0.61 \in (0.557, 0.7],$

A D N A B N A B N A B N

Ruchika Kaushik (INFN, Roma) Investigating cosmological tensions in low and

And then we introduce the bining! \diamond

Bin	Data
1	Masers, SNe
2	iso BAO, SNe, CC
3	SNe, CC
4-6	aniso BAO, SNe, CC

TABLE I: Summary of the data in each bin.

bin 1:	$\bar{z}_1 =$	$0.021 \in (0, 0.029],$
bin 2:	$\overline{z}_2 =$	$0.122 \in (0.029, 0.21],$
bin 3:	$\bar{z}_{3} =$	$0.261 \in (0.21, 0.321].$
bin 4:	$\bar{z}_4 =$	$0.38 \in (0.321, 0.47],$
bin 5:	$\bar{z}_{5} =$	$0.51 \in (0.47, 0.557],$
bin 6:	$\bar{z}_{6} =$	$0.61 \in (0.557, 0.7],$

イロト イボト イヨト イヨト

$$\bar{z}_i = \frac{\sum_{k}^{N_i} z_k(\sigma_k)^{-2}}{\sum_{k}^{N_i} (\sigma_k)^{-2}},$$

Ruchika Kaushik (INFN, Roma) Investigating cosmological tensions in low and

▶ ▲ ≣ ▶ ≣ ∽ ۹ ペ Nov 11, 2023 38

Results \diamond

Ī	$H_0 \left[\frac{\mathrm{km}}{\mathrm{sMpc}}\right]$	Ω_m	r _d [Mpc]	М
0.021	$73.41_{-2.88}^{+3.10}$	$0.51_{-0.34}^{+0.33}$		$-19.26^{+0.09}_{-0.09}$
0.122	$69.85_{-3.10}^{+3.17}$	$0.26^{+0.10}_{-0.09}$	$143.08^{+7.14}_{-6.74}$	$-19.36^{+0.09}_{-0.09}$
0.261	$69.10^{+12.46}_{-12.12}$	$0.27^{+0.20}_{-0.15}$		$-19.39^{+0.40}_{-0.33}$
0.38	$71.90^{+6.42}_{-6.03}$	$0.22^{+0.11}_{-0.09}$	$143.94^{+9.94}_{-8.91}$	$-19.33^{+0.15}_{-0.15}$
0.51	$59.98^{+7.64}_{-6.45}$	$0.37^{+0.12}_{-0.10}$	$164.05^{+17.66}_{-15.92}$	$-19.65^{+0.23}_{-0.23}$
0.61	$58.72_{-5.87}^{+6.40}$	$0.44_{-0.10}^{+0.12}$	$161.04^{+13.31}_{-11.55}$	$-19.59^{+0.18}_{-0.17}$

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへで

Decreasing Trend of H_0 with redshift is verified! \diamond

- We fit the same linear regression through the data with the original binned H_0 values and find that the slope of the data falls 2.1 σ (which is 1.7 σ in HOLiCOW) away from the slope of the null hypothesis.
- Concretely, we find the intercept $H_0 = 73.6 \pm 2.5$ km/sec/Mpc, which is curiously close to H0LiCOW's H_0 determination.

Decreasing Trend of H_0 with redshift is verified by other studies \diamond

M. G. Dainotti et al 2021, ApJ 912 150

Conclusions \diamond

- Decreasing trend of H_0 with redshift as proposed by H0LICOW is verified.
- If we don't do binning, we get value of H₀ around 69.74^{+1.60}_{-1.56} km/sec/Mpc, So now it is conceivable that the Planck result for flat ACDM is an "averaged" value, which is essentially a *coarse-grained* value for H₀.
- If the trend is true, Then all the Early Universe Solutions to Hubble Tension will be falsified.
- Motivating to find the solution of Hubble Tension in late universe physics

A (10) × (10)

Other observations ACDM can not explain: JWST \diamond

Figure 4: Stellar mass density in JWST-selected massive galaxies. The large symbols show the total mass density of the seven galaxies in two redshift bins, 7 < z < 9 and 9 < z < 11, and for two limiting masses, $\log(M_*/M_{\odot}) > 10$ and $\log(M_*/M_{\odot}) > 10.5$. The lines are derived from Schechter fits to UV-selected samples.³ Dashed lines are derived from Monte Carlo simulations that perturb the masses of individual galaxies. The perturbations are drawn from a log-normal distribution with a 1σ width of 0.48 dex (a factor of 3). The JWST-selected galaxies greatly exceed the expected mass densities of massive galaxies at these redshifts.

²Labbe et al.

2

Ruchika Kaushik (INFN, Roma)

→ ∃ →

Stress Testing ACDM with High-redshift Galaxy Candidates \diamond

Can present cosmological models explain observations from Early JWST Observations? Matteo Forconi, Ruchika,Alessandro Melchiorri Phys. Rev. D 97,103511(2018) Question: Does disagreement exist because of CMB polarization measurements?

Does disagreement exist because of CMB polarization measurements? \diamond

Are early universe solutions enough? \diamond

SH0ES: Supernova H0 for the Equation of State

> Universe 9Â (2023)Â 9, 393,Â

By Sunny Vaganozzi

PC: Cristina Ghirardini

(日)

Let's talk about Late time Solutions ...

Ruchika Kaushik (INFN, Roma) Investigating cosmological tensions in low and

<ロト <回ト < 回ト < 回ト -

Cosmolological Model Independent Approach : Cosmography

with Salvatore Capozziello, Anjan Sen \diamondsuit

$$H(z) = H_0 + H_{10}z + \frac{H_{20}}{2!}z^2 + \dots$$
 (The Taylor Series expansion)
where $H_{i0} = \frac{d^iH}{dz^i}|_{z=0}$.
$$H(t) = \frac{1}{a}\frac{da}{dt}$$

$$\begin{split} q(t) &= -\frac{1}{a} \frac{d^2 a}{dt^2} \left[\frac{1}{a} \frac{d a}{dt} \right]^{-2} : j(t) = \frac{1}{a} \frac{d^3 a}{dt^3} \left[\frac{1}{a} \frac{d a}{dt} \right]^{-3} \\ s(t) &= \frac{1}{a} \frac{d^4 a}{dt^4} \left[\frac{1}{a} \frac{d a}{dt} \right]^{-4} : l(t) = \frac{1}{a} \frac{d^5 a}{dt^5} \left[\frac{1}{a} \frac{d a}{dt} \right]^{-5} \end{split}$$

$$\begin{aligned} H_1 &= & H_{10}/H_0 = 1 + q_0 \\ H_2 &= & H_{20}/H_0 = -q_0^2 + j_0 \\ H_3 &= & H_{30}/H_0 = 3q_0^2(1+q_0) - j_0(3+4q_0) - s_0 \\ H_4 &= & H_{40}/H_0 = -3q_0^2(4+8q_0+5q_0^2) + j_0(12+32q_0+25q_0^2-4j_0) + s_0(8+7q_0) + l_0 \end{aligned}$$

Pade Approxmation \diamond

$$H(z) = H_0 + H_{10}z + \frac{H_{20}}{2!}z^2 + ...$$
 (The Taylor Series expansion) (1)
where $H_{i0} = \frac{d^i H}{dz^i}|_{z=0}$.

$$E(z) = \frac{H(z)}{H_0} = \frac{1 + P_1 z + P_2 z^2}{1 + Q_1 z + Q_2 z^2}$$
(The Pade Approximation (P_{2,2})) (2)

Investigating cosmological tensions in low and

Negative Cosmological Constant is Consistent with Cosmological Data.

with Koushik Dutta, Anirban Roy, Anjan A. Sen, M. M. Sheikh-Jabbari 🛇

Hubble Parameter Equation can be written as:

$$\frac{H^2}{H_0^2} = \Omega_{m0}(1+z)^3 + (1-\Omega_{m0})f(z)$$
(3)

Ruchika Kaushik (INFN, Roma)

Investigating cosmological tensions in low and

Results \diamond

• Reconstructed Hubble parameter behavior matches with low as well as high redshift data.

< 3 >

Results with Planck Constraint on $H(z) \diamond$

 $\dot{
ho}(z)|_{z=z_{min}}=0 \Rightarrow (
ho_{DE}+P_{DE}=0)$

That is, at the minimum, the ρ_{DE} behaves like a cosmological constant.

Possible effects in Structure Formation \diamond

- Due to the presence of -ve A and due to spatial flatness, the $\Omega_m > 1$ for certain redshift range. This results more growth of structures due to deeper gravitational potential and the nonlinear regime may start earlier than ACDM Universe and there will be more massive galaxies at high redshifts than ACDM.
- These are definite prediction and can be verified by upcoming large scale surveys say by *DESI*, *EUCLID*, *LSST* using simulations or power spectra.

Consistency with Planck's measurement of the CMB anisotropy \diamond

• CMB TT spectra together with Planck data and our Model.

Ruchika Kaushik (INFN, Roma) Investigating cosmological tensions in low and

Nov 11, 2023 55

Can a Gravitational Constant Transition at a distance of 10-40 Mpc solve the Hubble Tension?

with Himansh Rathore, Shouvik Roy Choudary, Vikram Rentala \diamond

Seems like it does... \diamond

We select μt from a list of values between 29 and 32.5 in steps of 0.5, and $\Delta G/G$ as 2%, 4%, 5%, 6%, and 8% and perform MCMC fitting.

Results and Comparison \diamond

Parameters	Without G-transition	With G-transition
M_H^W	-5.89 ± 0.01	-5.88 ± 0.01
b_W	-3.27 ± 0.01	-3.28 ± 0.01
μ_{LMC}	18.54 ± 0.01	18.54 ± 00.01
$\mu_{NGC4258}$	29.30 ± 0.03	29.30 ± 0.03
M_B	-19.23 ± 0.03	-
M_{B1}	_	-19.20 ± 0.04
M_{B2}	-	-19.47 ± 0.06
n	_	-3.39 ± 0.84
$H_0 \text{ (kmsec}^{-1} \text{Mpc}^{-1}\text{)}$	73.73 ± 1.12	65.90 ± 1.70

Model	$\chi^2_{\rm min}$	d	N	1	$\chi^2_{\rm do}$	of
Without G-transition	1963.19	24	126	57	1.5	79
With G-transition	1962.13	27	27 1267		1.582	
Model	AIC	BIC	2	ΔΑ	AIC	ΔBIC
Model Without G-transition	AIC 2011.19	BIC 2134.	66	Δ <i>Α</i>	AIC .0	ΔBIC 0.0

A D N A B N A B N A B N

Hubble Constant/ Absolute Magnitude tension? \diamond

Addresses Hubble Constant / Absolute Magnitude tension.

H0 = 73.73 \pm 1.12 Km/s/Mpc	H0 = 65.90 \pm 1.70 Km/s/Mpc
	$\log(H_0) = \frac{M_B + 5a_B + 25}{5}.$
	<ロ> <型> <型> < 型> < 三> 、 三< のQ

Nov 11, 2023 59

Hubble Constant/ Absolute Magnitude tension? \diamond

Addresses Hubble Constant / Absolute Magnitude tension.

Shift in Distance Modulus in case of *G*-Transition \diamond

< 3 >

Conclusions

We need to work more...

イロト イポト イヨト イヨト

Situation at present! \diamond

SH0ES: Supernova H0 for the Equation of State

Universe 9Â (2023)Â 9, 393,Â

By Sunny Vaganozzi

PC: Cristina Ghirardini

(日)

Situation at present and present Goal!

Investigating cosmological tensions in low and

Thanks!

Ruchika Kaushik (INFN, Roma) Investigating cosmological tensions in low and

▲ ■ ▶ ■ つへへ Nov 11, 2023 65

<ロト <回ト < 回ト < 回ト -