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Epoch of Reionization
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Observational Probes of Reionization
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COSMIC MICROWAVE BACKGROUND

The CMB photons undergo Thomson scattering with the free electrons from reionization.
Causes amplification in the CMB polarization signal at large scale (“reionization bump”)

Thomson scattering optical depth:
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Modelling Reionization

We look at two approaches of modelling the process of
reionization:

1. Parametrizing the fraction of neutral hydrogen in the
intergalactic medium as a function of redshift.

2. Solving the ionization equation for the intergalactic
medium



Parametric Models

Free electron fraction per hydrogen ionization : z.(z) = ne(2)
nu(z)
Zmax (1 e Z)Z
= 0 d Z
T = np( )CGTI) zxe(2) H

Planck collaboration uses the following parametrizations of the free electron fraction in the
IGM:

1. Redshift symmetric tanh parametrization
2. Redshift asymmetric parametrization



Redshift Symmetric Parametrization

Tanh reionization history (used since CAMB):

Te(2) = g [1 + tanh (y(zre)a; y(z)))]
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0z is the width of the hyperbolic tangent step.
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Zre 18 the redshift where reionization is 50% complete, i.e. x.(z.) = f/2.



Redshift Asymmetric Parametrization

A power law form of this parametrization 1s used

in Planck XLVII:
) f for z < zeng
Blz) =
[ " forz>
Zearly  “end — ~end

Zearly 18 taken to be z=20 here.
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Ionization Equation

The volume filling factor of ionized hydrogen, Qp,, is given by:
(dotted quantities represent time derivatives)

dC?H“ o hion L QH“

dt <n'H> trec

Nion : 10onizing photon production rate Recombination time
Tion = PUV {Eion fesc) g i) = 1
puv: UV luminosity density Cu,,a(Tigm) (1 =+ Z%) (ng)(1+ 2)3
&ion - PhoOtON prod}lction efficiency Clumping factor: i (n2, “>.
fsc - €Scape fraction "= )2

Xprpc

mpmg

(ny) : avg density of H atoms; (nm) =



In terms of redshift, we can write the ionization equation as:

dQHu (Z) _ 1 (pUV(Z)<£ionfeSC> o QH!I Z)>

dz  (1+2)H(2) (ny) trec(2)

The Thomson optical depth expression then becomes

T = /%QHU(Z)RH(O)UT (1 + W%) ae

where, ¢ o
0 if only H ionized

-3
If

1 if H ionized and He singly ionized

2 if H ionized and He doubly ionized
\



Datasets

1. Optical depth constraints from Planck 2018 release (z = 0.054+0.007)

2. The derived UV luminosity density data [in Ishigaki et. al. 2018)] analysis, from HFF
observations. Here we use the luminosity density measurements with truncation
magnitudes of -17 and -15 (labelled ahead as UV17 and UV 15 respectively)

3.  We use the measurements of neutral hydrogen fractions from the Lyman-o emission
from galaxies, damping wings of Gamma Ray Bursts and Quasars spectra.



UV Luminosity Density

To obtain solutions to the ionization equation, we need to assume some form for the UV
luminosity density.

The evolution of the UV luminosity density with redshift can be obtained by parametric
and non-parametric methods.

We consider commonly used parametric methods which assume the density to be described
by Single power—law [Yu et al. (2012);Bouwens (2016)] and double power-law [Ishigaki et al. (2015); Ishigaki et al.
018)] forms:

puv(z) =puv, - 107

o 2pUV,z:zl
o 10a(z—z1) o= 10b(z—zl)

puv(2)



Gaussian Process Regression

® A Gaussian process 1s a collection of random variables, any finite number of which
have a joint Gaussian distribution.
e A Gaussian process is completely specified by its mean function and covariance

function
for a real process f(x), we have
Mean function: pu(x) = E[f(x)]
Covariance function: k(x,x) = E[(f(x) — p(x)(f(x) — px))]

Ref: Rasmussen and Williams 2006



Gaussian Process Regression

Consider a finite set of training points x = {z;}. A function f(x) evaluated at each
x; is a random variable with a Gaussian distribution, such that the vector f = {f;} has a

multivariate Gaussian distribution given as:
f~ N (u(x),C(x,x))

Where C is the covariance matrix characterized by the covariance function &, which gives
the covariance between two random variables,

[C(x,x)]i; = cov(fi, fj) = k(=i z;)
Radial Basis Function (RBF) kernel:
(z: — l'j)z :
k(z;,z;) =exp g ) [ : correlation length (kernel hyperparameter)

Ref: Rasmussen and Williams 2006



Gaussian Process Regression

Let {z}, f*} be a finite set of test points, then,
£ ~ N (u(x*), C(x",x7))

The joint distribution of f and f* is given by:

f-l N u(xﬂ O(x.%) C(ij*)]
f*J /.L(x*)J’ C(x*, %) C(x*,x*)J

To get the posterior distribution over functions we need to restrict this joint prior
distribution to contain only those functions which agree with the observed data points.

Conditional distribution gives

Bl x,f ~ N(u(x*)-I-C(x*,x)C(x,x)_l(f— u(x)),
C(x*x*) = CE*,x)0Cx,x) ", x*))



Gaussian Process Regression

If we have noisy data {x;,y,;} (with variance 42 ) as training points, then

E]~w([48) PGl SE3))

we can find the joint posterior distribution ( {* | X*, p 4 ) by conditioning this joint
Gaussian prior distribution on the observations.

The kernel hyperparameter / can be trained using the data points by marginalizing over all

functions f at x, and maximizing the marginal likelthood  P(y|x,l) = / P(y|f)P(f|x,1)df

= InP(ylx, 1) = —5 (y=4(9)7 (€ ) +02D) ™ (y=p(x))" ~ 5 I [Cx, )|~ 5 In2m

Once the value of the correlation length hyperparameter is obtained by maximizing the
above equation, we can predict the values for the test points * at the locations x*.

Ref: Rasmussen and Williams 2006



Can a power-law explain the UV luminosity density data?
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Constraints on Reionization History

dQn,,(2) _ 1 ( puv(2){Eionfose) QH,,(Z)>
H(z) (n) Eree(2)

dz (1+ 2)
We now obtain joint constraints on reionization history using all the 3 data sets described

earlier: Planck optical depth, QHII data and UV luminosity density data for M qunc — V7
and —15.

e 4 equidistant nodes between redshifts 4-10 to define the UV luminosity densities.

e The values of UV luminosity density at the redshift nodes are taken as free
parameters for MCMC sampling, and at each step these points are used as training
points for GPR

e Solve the ionization equation to get the reionization history



B M= — 15 (CMB+UV15+QHII)
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Conclusions

While the commonly used logarithmic double power-law model of UV luminosity
density evolution agrees well with the data, the single power-law is ruled out.

Using the reconstructed UV luminosity density evolution, we reconstruct the
reionization history using the optical depth from the CMB observation, UV
luminosity data from HFF observation, and neutral hydrogen fraction data from
galaxy, quasar and gamma ray burst observations.

For CMB+UV17+QHII, we get optical depth 0.052 + 0.001 + 0.002 (agrees with 1o
optical depth from Planck results)

High redshift observations with JWST and THESEUS will definitely be helpful in
providing better constraints, particularly around the tail



