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Two unresolved problems
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Observations of magnetic fields in the universe

Max Planck Institute for Radio Astronomy

Micro-Gauss strength magnetic field over 10kpc coherence length scale is present in galaxies.

Origin of cosmological magnetic fields is still an unresolved problem.
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Matter-Antimatter asymmetry

Particle Data Group (2019)

ηB ≡
nB − nB̄

nγ
' 6.1× 10−10

J. Cline (2006)
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Sakharov’s conditions

In 1967, Sakharov proposed three necessary conditions for creating the baryon asymmetry

Baryon number violation

Charge (C) and charge parity (CP) violation

Departure from thermal equilibrium
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Davidson’s conditions

Davidson, PLB (1996)

In 1996, Davidson pointed out an interesting relation between the primordial magnetic field
and Sakharov’s conditions

There should be some out of thermal equilibrium dynamics because in equilibrium, the
photon distribution is thermal, and there are no particle currents to sustain a
”long-range” field

Since
−→
B is odd under C and CP, the presence of magnetic field will lead to CP violation.

Since the magnetic field is a vector quantity, it chooses a particular direction hence breaks
the isotropy (rotational invariance).

Davidson’s conditions are necessary but not sufficient. There is a key missing ingredient.
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Helical magnetic fields
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Two kinds of fields

Electromagnetic field has two transverse degrees of freedom which can be associated with
Left circular and right circular polarization.

For massless particle helicity is the projection of the direction of spin (clockwise or
anti-clockwise) along the direction of propagation. Hence giving +1,−1 for right
handed and left handed helicity modes.

Same propagation (speed or dispersion relation) of both polarization modes lead to
non-helical, and differently propagating modes lead to helical fields.

If both the polarization modes propagate differently → Helicity imbalance

How to create helicity imbalance?
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Helical magnetic fields

Lorentz force,
−→
F = m d−→v

dt =
−→
E +−→v ×

−→
B implies that under parity transformation

(changing the sign of coordinate system):
−→
E −→ −

−→
E ,
−→
B −→

−→
B .

Because standard EM action, FµνF
µν ∝ B2 − E 2, is quadratic in

−→
E and

−→
B , it is invariant

under parity symmetry.

Fµν F̃
µν = −4

−→
E ·
−→
B is parity non-invariant, where F̃µν = 1

2ε
µναβFαβ.

Hence Fµν F̃
µν can create the Helicity imbalance.
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A simple example: Vorticity

Vorticity is defined as
−→
Ω =

−→
∇ ×−→v , where −→v is velocity field.

Wikipedia
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Magnetic helicity

Magnetic helicity (HM) is

defined as:
∫
d3x
−→
A ·
−→
B and

−→
B ·
−→
∇ ×

−→
B .

It is a measure of twist and
linkage of magnetic field
lines.

Grasso and Rubinstein (2001),

Blackman (2014)

HM =
∫
d3x
−→
A ·
−→
B = 2V1 · V2
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Why helical magnetic fields are interesting?

Helical magnetic fields leave a very distinct signature as they violate parity symmetry
which leads to observable effects, e.g. correlations between the anisotropies in the
temperature and B-polarisation or in the E- and the B-polarisations in the CMB.

Kahniashvili (2006)

One of the interests in primordial magnetic helicity is that it can be a direct indication of
parity violation (CP violation) in the early Universe. Vachaspati (2001)

The decay rate of energy density and coherence length is slower for helical magnetic fields
due to inverse cascade (transfer power from small to large scales so that even blue
spectra can lead to significant power on large scales). Durrer etal.(2011)
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Missing link between Sakharov and
Davidson’s conditions

14 / 42



Broken symmetries in the presence of magnetic field

Davidson’s conditions :

There should be some out-of-thermal-equilibrium dynamics

Breaks C ,CP and SO(3)

Presence of magnetic fields satisfy only two of Sakharov’s conditions
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Missing ingredient: Helical magnetic fields

The presence of helical fields leads to non-zero Chern-Simons number density and,
eventually, the change in the Fermion number.

In the presence of an electromagnetic field in curved space-time, the chiral anomaly is
given by the following equation

∇µJµA = − 1

384π2
εµνρσRµναβR

αβ
ρσ +

e2

16π2
εµναβFµνFαβ (1)

where JµA is the chiral current.

First term on RHS vanishes (up to first order) in flat FRW universe, however due
to the presence of the antisymmetric tensor, the gravitational fluctuations lead to
gravitational birefringence and can lead to net chiral current. Alexander et al. (2006)

The second term on RHS, in magnetic field background is non-zero and hence leads to a
net chiral current.

16 / 42



Baryon number density nB = nb − nb̄ = a(η)〈0|J0
A|0〉 = e2

4π2 a(η)nCS , where Chern Simon
number density is

nCS =
1

a4

∫ Λ

µ

dk

k

k4

2π2

(
|A+|2 − |A−|2

)
(2)

For non-helical fields |A+| = |A−| which implies nCS = 0.

For helical fields, nCS 6= 0 implies an imbalance between baryons and anti-baryons
−→ Baryon number violation

Hence the requirement of helical magnetic fields

to have non-zero nCS is missing in Davidson’s conditions.
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How to generate magnetic fields ?
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Problem with magnetic field generation during inflation

EM action for an arbitrary 4-D metric

SEM = −1

4

∫
d4x
√
−ggαµgβνFαβFµν

where Fµν = ∂µAν − ∂νAµ, and Aµ is electromagnetic four vector.

Under conformal transformation g̃µν = ω2(x)gµν

S̃EM = −1

4

∫
d4x

√
−g̃ g̃αµg̃βνFαβFµν = SEM

EM action is conformally invariant, and hence equations of motion for magnetic fields
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Flat FRW line element:

ds2 = dt2 − a2(t)
[
dx2 + dy2 + dz2

]
(3)

with dt = a(η)dη is
ds2 = a2(η)[dη2 − dx2 − dy2 − dz2]︸ ︷︷ ︸

conformally flat

(4)

FRW models are conformally flat: gµν = a2(η)ηµν

EM action in conformal FRW metric is

S = −1

4

∫
d4xηαµηβνFαβFµν

Which is same as in Minkowski space-time.

Hence in conformally flat FRW background, B ∼ 1
a2

for inflation a(t) = eHt , so after the end of inflation (for 60 e-foldings), B ∼ e−120

We need to break the conformal invariance of EM action
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(Helical fields) Models in the literature

Scalar field coupled models: f (φ)Fµν F̃
µν where f (φ) is time-dependent coupling function.

Problems with these models :
Strong coupling - Coupling between charged particles and the EM field is so strong that
theory can not be treated perturbatively.

Back-reaction - Overproduction of gauge fields affect the background inflationary dynamics

Because magnetic fields are produced near the end of inflation, strength of the fields
generated depends on the reheating scale.

To resolve strong coupling and back-reaction problem f (φ) is assumed to increase during
inflation and decrease back to its initial value post inflation.
Durrer et al.(2011), Sharma et al.(2018)
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Helical magnetic fields from Riemann
coupling
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Motivation

Non-minimal coupling to the Riemann tensor generates sufficient primordial helical
magnetic fields at all observable scales.

Necessary condition : Conformal invariance breaking + parity violation

S =

Einstein-Hilbert term︷ ︸︸ ︷
−
M2

P

2

∫
d4x
√
−g R +

Scalar field︷ ︸︸ ︷∫
d4x
√
−g
[

1

2
∂µφ∂

µφ− V (φ)

]
− 1

4

∫
d4x
√
−g FµνF

µν − 1

M2

∫
d4x
√
−g Rµν

αβFαβ F̃
µν︸ ︷︷ ︸

Conformal breaking

(5)

where M is the energy scale, which sets the scale for the breaking of conformal invariance.
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Evolution equation

In Flat FRW universe : ds2 = a2(η) (dη2 − δijdx idx j). In the Coulomb gauge
(A0 = 0, ∂iA

i = 0), equation of motion is

A′′i +
4 εijl
M2

(
a′′′

a3
− 3

a′′a′

a4

)
∂jAl − ∂j∂jAi = 0 (6)

Which in helicity basis can be written as:

A′′h +

[
k2 − 4kh

M2
Γ(η)

]
Ah = 0 (7)

where,

Γ(η) =
a′′′

a3
− 3

a′′a′

a4
=

1

a2

(
H′′ − 2H3

)
(8)

which vanishes for de-sitter case.
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Helical magnetic field generation

For power law inflation: a(η) =
(
− η
η0

)β+1
, de-sitter β = −2, we have

A′′h +

[
k2 − 8kh

M2

β(β + 1)(β + 2)

η3
0

(
−η0

η

)(2β+5)
]
Ah = 0 (9)

Sub-horizon mode | − kη| >> 1 solution is: Ah = 1√
k
e−ikη

For super-horizon mode | − kη| << 1, with dimensionless variable, τ =
(
−η0

η

)α
and

α = β + 3
2

A+(τ, k) = τ−
1

2α J 1
2α

(
ς
√
k

α
τ

)
C1 + τ−

1
2α Y 1

2α

(
ς
√
k

α
τ

)
C2 (10a)

A−(τ, k) = τ−
1

2α J 1
2α

(
−i ς
√
k

α
τ

)
C3 + τ−

1
2α Y 1

2α

(
−i ς
√
k

α
τ

)
C4 (10b)

25 / 42



Taking H ∼ η0
−1 ∼ 1014GeV, and M ∼ 1017GeV gives

|C1| ≈ |C3| ≈ 10−17/2GeV−
1
2 , and |C2| ≈ |C4| ≈ 10−11/2GeV−

1
2 . (11)

h = +1

h = -1
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Figure: Figure showing the behaviour of positive and negative helicity mode for α = −0.53 and
α = −1. τ̃ = 10− 63

2 τ and the vertical axis is in GeV−1/2.

We can ignore the negative helicity mode.
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Electromagnetic energy density

To identify whether these modes lead to back-reaction on the metric, we define R, which is
the ratio of the total energy density of the fluctuations and background energy density during
inflation: Talebian et al.(2020)

R =
(ρB + ρE )|k∗∼H

6M2
PH

2
(12)

α ρ (in GeV4) R

−1
2 − ε ∼ 1064 ∼ 10−4

−3
4 ∼ 1062 ∼ 10−6

−1 ∼ 1061 ∼ 10−7

−3 ∼ 1059 ∼ 10−9

No back-reaction on the background metric.
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Estimating the strength of helical magnetic fields

Assuming instantaneous reheating, and the Universe becomes radiation dominated after
inflation. Due to flux conservation, the magnetic energy density will decay as 1/a4 :
Subramanian (2016)

Using the fact that the relevant modes exited Hubble radius around 30 e-foldings of
inflation, with energy density ρB ≈ 1064GeV4, the primordial helical fields at GPc scales
is:

B0 ≈ 10−20G (13)

Helical magnetic fields that re-entered the horizon at two different epochs:

B|50 MPc ∼ 10−18 G (z ∼ 20) ; B|1 MPc ∼ 10−14 G (z ∼ 1000)
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Baryogenesis from helical magnetic fields
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modes lead to baryogenesis

first 10 e-foldings lead to CMB
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Baryon asymmetry parameter

The modes that re-enter very early during the radiation-dominated epoch are
responsible for the generation of baryon asymmetry.

Therefore we consider the modes which left the horizon around 5 to 10 e-foldings,
Chern-Simon number density is

nCS =
1

2π2 a4(η)

∫ Λ

µ
dk

(
|C |2 k3+ 1

2α +

∣∣∣∣C2
F−1

π
Γ

(
1

2α

)∣∣∣∣2 k3− 1
2α τ−

2
α

)
. (14)

Since entropy density per comoving volume is conserved, the quantity nB/s is better
suited for theoretical calculations.

Assuming that there was no significant entropy production after reheating phase, entropy
density in the radiation-dominated epoch is:

s ' 2π2

45
g T 3

RH (15)
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Baryon asymmetry parameter

ηB =
nB
s
≈ 10−2

(
M

MP

)3( Λ

TRH

)3

(16)

Using the parametrization

ηB = n × 10−10, M = m × 1014GeV , Λ = δ × 1012GeV , TRH = γ × 1012GeV (17)

equation for baryon asymmetry parameter becomes:

m3 × δ3

γ3
≈ n 107 (18)
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n=1
n=5
n=10

For a range of values of γ, δ, and m, BAU can have values between 10−10 to 10−9.

The analysis shows that M ∼ 1017GeV is consistent with baryogenesis.
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Conclusion and Future work

Our model does not require the coupling of the electromagnetic field with the scalar field.
Hence, there are no extra degrees of freedom and will not lead to a strong-coupling
problem.

Since the curvature is large in the early Universe, the coupling term will introduce
non-trivial corrections to the electromagnetic action.

We have explicitly shown that Davidson’s conditions are necessary but not sufficient. The
key missing ingredient is the requirement of helical magnetic fields.

The BAU parameter predicted by our model is independent of any specific inflation model
and reheating dynamics; however, it depends on the scale at which inflation ends and
reheating temperature.

Currently, we are studying the effects on the asymmetry generated in quarks and leptons.
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Thank you
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Backup slides
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Conformal transformation

g̃µν = ω2(x)gµν =⇒ Γ̃λµν = Γλµν + Cλµν (19)

where Cλµν = ω−1
(
δλµ∇νω + δλν∇µω − gµνg

ρλ∇ρω
)

Fµν = ∇µAν −∇νAµ = ∂µAν − ΓλµνAλ − ∂νAµ + ΓλνµAλ = ∂µAν − ∂νAµ (20)

R̃λσµν = Rλσµν +∇µCλνσ −∇νCλµσ + CλµρC
ρ
νσ − CλνρC

ρ
µσ (21)

R̃µν = Rµν − [2δαµδ
β
ν + gµνg

αβ]ω−1(∇α∇βω)

+ [4δαµδ
β
ν − gµνg

αβ]ω−2(∇αω)(∇βω) (22)

R̃ = ω−2R −−6gαβω−3(∇α∇βω) (23)

∇̃µ∇̃νφ = ∇µ∇νφ− ( δαµ δ
β
ν + δβµ δ

α
ν ) ω−1 (∇αω)(∇βω) (24)

Back
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Energy densities

Gauge field decomposition:

Ai (~x , η) =

∫
d3k

(2π)3

∑
λ=1,2

εiλ

[
Aλ(k , η)bλ(~k)e ik·x + A∗λ(k , η)b†λ(~k)e−ik·x

]
(25)

The EM energy densities with respect to the comoving observer are:

ρB (η, k) ≡ −1

2
〈0|BµBµ|0〉 =

∫
dk

k

1

(2π)2

k5

a4

(
|A+ (η, k)|2 + |A− (η, k) |2

)
(26)

ρE (η, k) ≡ −1

2
〈0|EµEµ|0〉 =

∫
dk

k

1

(2π)2

k3

a4

( ∣∣A′+ (η, k)
∣∣2 +

∣∣A′− (η, k)
∣∣2 ) (27)

ρh (η, k) ≡ −〈0|AµBν |0〉 =

∫
dk

k

1

2π2

k4

a3

(
|A+ (η, k)|2 − |A− (η, k)|2

)
. (28)

where spectral energy density is given by dρΥ
d lnk for Υ ∈ (B,E , h)
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Using the fact that we can approximate the super-horizon modes by power law, we have

A+(τ, k) = C k
1

4α − C2
F−1

π
Γ

(
1

2α

)
k−

1
4α τ−

1
α (29)

where

F(τ) = F (τ)
( ς

2α

) 1
2α
, (30)

C (τ) = F (τ)
( ς

2α

) 1
2α

[
C1

Γ
(
1 + 1

2α

) − C2

π
Γ

(
− 1

2α

)
cos
( π
2α

)]
, (31)

and the approximate values are |F| ∼ 10−
5
α GeV−1/4α, |C| ∼ 10−

5
α
− 11

2 GeV−
1
4α
− 1

2 .
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Power spectrum

dρB
d lnk

∣∣∣∣
k∗∼H

∝ |C |2 k
3+4α+ 1

2α
∗ +

∣∣∣∣C2
F−1

π
Γ

(
1

2α

)∣∣∣∣2 (2α− 1)2

4η2
0

k
1+4α− 1

2α
∗ (32)

It has two branches

The first branch (setting C2 = 0) has scale-invariant spectrum for α = − 1
2 ,−

1
4 .

Second branch (setting C = 0) has scale invariant spectrum for α = − 1
2 ,

1
4 .

Physically allowed values of α ≤ −1/2. Hence, α = ±1/4 is ruled out.

For slow-roll inflation (α = −1
2 − ε), the two branches scale differently: k−2ε

∗ (first
branch) and k−6ε

∗ (second branch).

Since ε is positive, this implies that our model produces more power on the large
scales.−→ Red spectrum for slow roll inflation
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Plots for lower energy scales of Λ and µ
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