14th August, 2021

Constraining the abundance of primordial black holes using EDGES 21-cm signal

Shikhar Mittal

Tata Institute of Fundamental Research, India

with Anupam Ray, Girish Kulkarni, Basudeb Dasgupta

Gravitation and Cosmology Group IIT Madras

The Global 21-cm Signal

Our observable is the 21-cm brightness temperature relative to the background (CMB) temperature:

$$\Delta T_{\rm b} = 27 x_{\rm HI} \left(\frac{1 - Y_{\rm P}}{0.76} \right) \left(\frac{\Omega_{\rm B} h^2}{0.023} \right) \sqrt{\frac{0.15}{\Omega_{\rm m} h^2} \frac{1 + z}{10}} \left(1 - \frac{T_{\rm r}}{T_{\rm s}} \right) \, {\rm mK}$$

e.g., Madau et al. (1997), Furlanetto (2006)

$T_{\rm s}$ is determined by 2 processes at cosmic dawn

$$\frac{n_1}{n_0} \equiv 3 \exp\left(-\frac{h\nu_{21cm}}{k_B T_s}\right), \qquad \nu_{21cm} = 1420 \text{ MHz}$$

- Stimulated, spontaneous emission and stimulated absorption
- By the Lyman- α photons (through Wouthuysen-Field effect)

$$T_{\rm s}^{-1} \approx \frac{T_{\rm r}^{-1} + x_{\alpha} T_{\rm k}^{-1}}{1 + x_{\alpha}}$$

 $T_{\rm k} = {\rm Gas\ temperature}$ $x_{\alpha} = {\rm Ly}\ \alpha \ {\rm coupling}$

Wouthuysen (1952); Field (1958); Madau et al. (1997)

Equation governing the evolution of T_k with z

$$(1+z)\frac{dT_{k}}{dz} = 2T_{k} - \sum \frac{2q}{3n_{b}k_{B}H(z)}$$
Adiabatic cooling

where q is the volumetric heating rate.

e.g. Mittal & Kulkarni (2020)

The 21-cm signal detected by the EDGES collaboration

EDGES: Experiment to Detect the Global Epoch of reionization Signal

Summary of parameters affecting 21-cm signal

Parameter	Description
$\log f_{\alpha}$	Ly α background
$\log\left(\frac{T_{\rm vir}}{10^4}\right)$	SFRD
$\log f_{\rm X}$	X-ray background
$\log \zeta_{\rm ERB}$	ERB
$\log f_{\rm PBH}$	Abundance of PBH

Inference procedure

Gaussian Likelihood

$$\mathcal{L}(\mathbf{D}|\theta) = \prod_{i=1}^{123} \frac{1}{\sqrt{2\pi\sigma_i^2}} \exp\left[-\frac{\left(\Delta T_{\rm b}^{\rm EDGES} - \Delta T_{\rm b}^{\rm prid}\right)^2}{2\sigma_i^2}\right], \qquad \sigma_i = 50 \text{ mK}$$

- Uniform (uninformative) priors, $\mathcal{P}(\theta)$
- By Bayes' theorem, the posterior sampling is:

 $P(\theta | \mathbf{D}) \propto \mathcal{L}(\mathbf{D} | \theta) \mathcal{P}(\theta)$

1. Changing the strength of Ly α Coupling

$$x_{\alpha} \propto J_{\alpha} \propto f_{\alpha} \phi_{\alpha} \dot{\rho}_{\star}$$

 J_{α} = Background of Ly α photons

 ϕ_{α} = Spectral energy distribution (Pop II)

 $\dot{\rho}_{\star} =$ Star formation rate density

Barkana & Loeb (2005), Mittal & Kulkarni (2020)

Effect of varying log f_{α} on $T_{\rm k}$ and $\Delta T_{\rm b}$

2. Changing the star formation rate density

Press & Schechter (1974), Barkana & Loeb (2001), Dayal & Ferrara (2018)

Effect of varying log $(T_{\rm vir} \cdot 10^{-4})$ on $T_{\rm k}$ and $\Delta T_{\rm b}$

3. Changing the strength of X-ray background

 $q_{\rm X} \propto J_{\rm X} \propto f_{\rm X} \phi_{\rm X} \dot{\rho}_{\star}$

 $J_{\rm X}$ = Background of X-ray photons

 $\phi_{\rm X} =$ Spectral energy distribution (0.2 – 30 keV and power law index 1.5)

 $\dot{\rho}_{\star} =$ Star formation rate density

Grimm et al. (2003), Gilfanov et al. (2004), Mineo et al. (2012), Mirocha & Furlanetto (2019)

Changing the strength of X-ray background (log f_X)

4. Changing the strength of excess radio background

Fixsen et al (2011), Dowell & Taylor (2018), Feng & Holder (2018)

Effect of varying $\log \zeta_{ERB}$ on T_k and ΔT_b

5. Abundance of primordial black holes

$$P = -n_{\rm PBH} \dot{M} c^2$$
$$n_{\rm PBH} = \frac{\Omega_{\rm PBH} \rho_{\rm crit}}{M} = f_{\rm PBH} \frac{\Omega_{\rm DM} \rho_{\rm crit}}{M}$$
$$q_{\rm PBH} = f_{\rm heat}(E, z) P \propto \frac{f_{\rm PBH}}{M^3}$$

Hawking emission is relevant for $10^{15} - 10^{17}$ g BHs

Emission peaks around 10 MeV to 100 keV

Assuming a monochromatic mass distribution

e.g. Hawking (1976), Clark et al. (2018)

Effect of varying log f_{PBH} on T_k and ΔT_b

Can EDGES 21-cm signal constrain the abundance of PBHs?

Case I: No X-ray heating

Best-fitting values:

 $\log f_{\alpha} = 1.0^{+0.01}_{-0.02}$

For 10^{15} g PBH

Case II: X-ray heating present For 10^{15} g PBH **Best-fitting values:** 0.260 $\log f_{\alpha} = 0.02^{+0.007}_{-0.007}$ $\log_{10}(T_{\rm vir} \cdot 10^{-4})$ 0.255 0.245 $\log (T_{\rm vir} \cdot 10^{-4}) = 0.25^{+0.001}_{-0.001}$ 0.550 0.525 $\log_{10} f_{\rm X}$ $\log f_{\rm X} = 0.50^{+0.01}_{-0.01}$ 0,175 $\log \zeta_{\rm ERB} = -1.27^{+0.02}_{-0.02}$ 1.20 $\log_{10}\zeta_{\rm ERB}$ 1.20 1.30 $\left|\log f_{\rm PBH} \le -9.73\right|$ 1.30 3.5 $\log_{10} f_{\text{PBH}}$ 96 There is an upper bound on 100 10,4 $f_{\rm PBH}$, but no lower bound. 108 104 100 96 93 allis 0.255 0.268 0.458 0.475 0.508 0.525 0.558 1.35 1.38 1.25 1.28 0.030 0.045 0.240 0.245 0.250 $\log_{10}(T_{\rm vir}\cdot 10^{-4})$ $\log_{10} f_{\alpha}$ $\log_{10} \zeta_{\rm ERB}$ $\log_{10} f_{\rm X}$ $\log_{10} f_{\text{PBH}}$

Case II: X-ray heating present

For 10^{15} g PBH

Best-fitting values:

 $\log f_{\alpha} = 0.02^{+0.007}_{-0.007}$

- $\log \left(T_{\rm vir} \cdot 10^{-4} \right) = 0.25^{+0.001}_{-0.001}$
- $\log f_{\rm X} = 0.50^{+0.01}_{-0.01}$
- $\log \zeta_{\rm ERB} = -1.27^{+0.02}_{-0.02}$

 $\log f_{\rm PBH} \le -9.73$

There is an upper bound on $f_{\rm PBH}$, but no lower bound.

Comparing the heating rate by PBHs and X-rays

Analysing the strategy of Clark et al. (2018)

- In their 'standard model' (no involvement of PBHs), $\Delta T_{\rm b}(z=17)=-200~{\rm mK}$
- Upper bound by setting $\Delta T_{\rm b}(z=17)<-50~{\rm mK},$ when PBH heating is added

The EDGES 21-cm signal gives stronger constraints

Constrain curvature power spectrum at small scales

Initial mass fraction (All PBHs formed the radiation dominated era)

By Press-Schechter formalism

 $\beta \equiv \frac{\rho_{\rm PBH}^{\rm i}}{\rho_{\rm r}^{\rm i}} \propto f_{\rm PBH} \sqrt{M_{\rm PBH}}$

$$\beta = 2 \int_{\delta_{\rm c}}^{1} P(\delta) d\delta \approx \operatorname{erfc}\left(\frac{\delta_{\rm c}}{\sqrt{2}\sigma}\right)$$

Connecting variance to CPS

$$\sigma^2 \propto \mathcal{P}_{\mathcal{R}}(k)$$

$$(f_{\text{PBH}}, M_{\text{PBH}}) \rightarrow (k, \mathcal{P}_{\mathcal{R}}(k))$$

e.g. Bugaev and Klimai (2009), Josan et al. (2009), Sato-Polito et al. (2019)

Constrain curvature power spectrum at small scales

Summary

- Global 21-cm signal can constrain PBH abundance in the range 10^{15} - 10^{17} g
- We derived constraints using the full shape of EDGES absorption profile
- Data prefer models with X-ray heating
- In the absence of X-ray heating, we 'detect' PBHs. For $10^{15}{\rm g}$ PBH, $f_{\rm PBH}{\sim}10^{-7}$ and increases with mass
- In the presence of X-ray heating, there is an upper bound on PBHs. For 10^{15} g PBH, $f_{\rm PBH} < 10^{-10}$ and increases as $\sim M^4$
- Non-PBH astrophysical parameters prefer reasonable values in agreement with literature