Probing primordial features due to particle production during inflation in the CMB data

Suvedha Suresh Naik

Manipal Centre for Natural Sciences (MCNS),

Centre of Excellence, Manipal Academy of Higher Education

09 April 2022

IIT Madras

Based on JCAP07(2022)016 [arXiv:2202.05862] by Suvedha Suresh Naik, Kazuyuki Furuuchi (MCNS) & Pravabati Chingangbam (IIA)

Plan of the talk

- Introduction
- The Models
- Methodology
 - Model selection
 - Selection of priors
- Results
 - Single burst of particle production
 - Multiple bursts of particle production
- Summary

Introduction

13.77 billion years

Cosmic Microwave Background (CMB) Observations

The Models

• Interaction term: $g^2 \, (\phi - \phi_0)^2 \, \chi^2$

g² - dimensionless coupling constant, model parameter

- Particle production: When the inflaton field value crosses φ = φ₀ during inflation → Field χ becomes massless → Burst of particle productions*
 - \rightarrow Bump-like features in primordial power spectrum

* Chung et al. (2000), Barnaby et al. (2009), Barnaby & Huang (2009), Barnaby (2010), Chluba et al. (2015), Pearce et al. (2017), Furuuchi (2016), Furuuchi et al. (2020a), Furuuchi et al. (2020b)

The Models

Inflation models based on gauge theory in higher dimension

$$S = \int d^4x \left[\frac{1}{2} \partial_\mu \phi(x) \partial^\mu \phi(x) - V(\phi) + \sum_{n=-\infty}^{\infty} \left\{ D_\mu \chi_n^{\dagger}(x) D^\mu \chi_n(x) + \chi_n^{\dagger}(x) g^2 \left(\phi(x) - 2\pi f n\right)^2 \chi_n(x) \right\} \right]$$

- \$\phi\$ extra-dimensional component of the gauge field
- f symmetry breaking scale
- n integer values

- V (φ) potential for inflaton field χ - complex scalar fields D_µ - gauge covariant derivative
- g 4D gauge coupling constant

Primordial Power Spectrum

The fiducial model: $P_s(k) = A_s \left(\frac{k}{k_*}\right)^{n_s-1}$

PLANCK collaboration $k_* = 0.05 \text{Mpc}^{-1}$ $n_s = 0.9649 \pm 0.0042$

Models with primordial features due to particle production during inflation:

Barnaby & Huang (2009) - Power spectrum template by fitting numerical results

Pearce et al. (2017) - analytical expression

$$P_{s}(k) = A_{s} \left(\frac{k}{k_{*}}\right)^{n_{s}-1} + A_{I} \sum_{i} \left(\frac{f_{1}(x_{i})}{f_{1}^{\max}}\right) + A_{II} \sum_{i} \left(\frac{f_{2}(x_{i})}{f_{2}^{\max}}\right)$$
$$A_{I} \simeq 6.6 \times 10^{-7} g^{7/2}$$
$$A_{II} \simeq 1.1 \times 10^{-10} g^{5/2} \ln \left(\frac{g}{0.0003}\right)^{2}$$
$$f_{1}^{(x_{i})} \equiv \frac{\left[\sin(x_{i}) - \operatorname{SinIntegral}(x_{i})\right]^{2}}{x_{i}^{3}}$$
$$f_{1}^{(x_{i})} \equiv \frac{-2x_{i} \cos(2x_{i}) + (1 - x_{i}^{2}) \sin(2x_{i})}{x_{i}^{3}}$$
$$f_{1}^{(x_{i})} \equiv \frac{k_{i}}{k_{i}} \qquad \operatorname{SinIntegral}(x) = \int_{0}^{x} \frac{\sin z}{z} dz$$

Primordial Power Spectrum

Models with primordial features due to particle production during inflation:

$$P_{s}(k) = A_{s} \left(\frac{k}{k_{*}}\right)^{n_{s}-1} + A_{I} \left(\frac{f_{1}(k/k_{b})}{f_{1}^{\max}}\right) + A_{II} \left(\frac{f_{2}(k/k_{b})}{f_{2}^{\max}}\right)$$

Methodology: Model Selection

• Effective $\Delta \chi^2$

$$\Delta \chi^2_{\text{eff}} := \chi^2_{M_1} - \chi^2_{M_0}$$

Planck collaborations 2013, 2015, 2018

• Bayes Theorem

Posterior probability distribution p(θ|data)

• Bayes factor $B_{01} = Z_{M1}/Z_{M0}$

$ \ln B_{01} $	Odds	Probability	Strength of evidence
< 1.0	$\leq 3:1$	< 0.750	Inconclusive
1.0	$\sim 3:1$	0.750	Weak evidence
2.5	$\sim 12:1$	0.923	Moderate evidence
5.0	$\sim 150:1$	0.993	Strong evidence

Jeffrey's scale for Bayesian model comparison (Jeffreys, 1939); interpretations modified by (Trotta, 2007).

Methodology: Data and Codes

Data: Planck 2018 temperature and polarization

Codes:

- **CLASS** (The Cosmic Linear Anisotropy Solving System) to calculate the angular power spectrum of the CMB anisotropies for a given cosmological model.
- **MontePython**, a publicly available parameter sampling package in Python, to sample a model's parameter space.
- **MultiNest** nested sampling approach developed is a Monte Carlo method aimed to efficiently calculate the evidence, producing posterior inferences

<u>https://github.com/lesgourg/class_public</u> <u>https://github.com/brinckmann/montepython_public</u>

Methodology: Selection of priors

11

Methodology: Selection of priors

• log k_b

Single bump models	Prior-A	$\log A_{\rm I} \\ \log k_b$	[-13, -8] [-4.5, -1.0]
	Prior-B	$\log A_{\rm I} \\ \log k_b$	[-13, -8] [-4.5, -2.2]
	Prior-C	$\log A_{\rm I} \\ \log k_b$	$[-13, -8] \\ [-2.2, -1.0]$
	Prior-D	$\log A_{\rm I} \\ \log k_b$	$[-13, -8] \\ [-3.2, -2]$

Results: Single burst of particle production

Parameters	Fiducial model	Single-bump model with different priors			
		Prior-A	Prior-B	Prior-C	Prior-D
100 Ω_b	2.237	2.239	2.235	2.231	2.233
Ω_{cdm}	0.1206	0.1204	0.1202	0.1211	0.1213
h	0.6716	0.6724	0.6731	0.6692	0.6688
$ au_{reio}$	0.05357	0.05127	0.05438	0.05287	0.05265
$\ln 10^{10} A_s$	3.044	3.039	3.046	3.043	3.048
n_s	0.9641	0.9678	0.9650	0.9678	0.9669
A_{I}		1.85×10^{-11}	9.17×10^{-12}	1.83×10^{-11}	2.7×10^{-11}
$k_b/{\rm Mpc}^{-1}$	-	0.0086	0.0042	0.0086	0.0091
$\Delta \chi^2_{ m eff}$	1000	-0.3	-0.1	-1.0	-1.1
$\ln \mathcal{B}$	—	0.4	0.3	0.2	0.4

Results: Single burst of particle production

Results: Multiple burst of particle productions

Multiple Bump Models:

Location of ith bump
$$k_i = e^{(i-1)\Delta}k_1$$

 $\Delta\,$ - separation between the bumps $k_{_1}\,$ - location of the first bump

Prior: $0 < \Delta < 1$

Parameters	Multi-bump model		
$100\Omega_b$	2.235		
$\Omega_{\rm cdm}$	0.121		
h	0.6704		
$ au_{ m reio}$	0.05751		
$\ln 10^{10} A_s$	3.015		
n_s	0.9644		
A_{I}	5.317×10^{-11}		
$k_1/{\rm Mpc}^{-1}$	1.806×10^{-3}		
Δ	0.799		
$\Delta \chi^2_{ m eff}$	-3.0		
$\ln \mathcal{B}$	0.8		

Results: Multiple burst of particle productions

Results: Multiple burst of particle productions

The residuals in CMB power spectra of best-fit multi-bump model

Summary

- Investigated a class of models involving particle production during inflation using latest CMB data from Planck
- We parametrize the primordial power spectrum with bump-like features using the analytical expression (dominant + subdominant)
- We found 95% CL upper limits on amplitude of features at different scales and model parameter g
- Bayes factor for all the single bump models are positive yet within the inconclusive range as per Jeffreys' scale

Single burst of particle production (A ₁ , k _b)	
Features in the large-scale (low-{) CMB data - Prior B	 Minor change in χ² value g < 0.1 For l < 500, A₁ < 35% A_s (95% CL)
Features in the small-scale (high-{) CMB data - Prior C	 Change in χ² value is ~1 g < 0.06 For l > 500, A₁ < 1.5% A_s (95% CL)
Features in the intermediate scale CMB data - Prior D	 Minor change in χ² value g < 0.08 A₁ < 4% A_s (95% CL)
Multiple bursts of particle productions (A_1, k_1, Δ) Prior: $0 \le \Delta \le 1$	 Change in χ² value is -3, Bayes factor 0.8 g < 0.05 A₁ < 1% A_s (95% CL)

Acknowledgments

- Debbijoy Bhattacharya
- Thejs Brinckmann
- Contributors on Github pages of MontePython
- Dr. T.M.A. Pai Ph.D. scholarship program
- SERB, DST, Government of India under the project file number EMR/2015/002471.
- Manipal Centre for Natural Sciences, Manipal Academy of Higher Education

Contact

□ <u>suvedha.snaik@gmail.com</u>

Thank You