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Motivation for Curvaton

An alternative method to generate adiabatic curvature
perturbation where inflaton is not responsible for it
[arXiv:hep-ph/0110002]

Curvaton does not require any assumptions about the nature of
inflation

Curvaton can save some models that are ruled out by data
[arXiv:1312.1353]

Possibility of producing large non-Gaussianities
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The Curvaton Picture

The curvaton field is subdominant in energy during inflation

Curvaton field is almost forzen during inflation

Curvaton does not affect the background inflationary evolution

After inflation the curvaton starts to dominate the energy density
and produce observed curvature perturbation
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Curvaton dynamics

Background curvaton: ��; curvaton perturbation: ��

The system

S =

Z
d4x
p�g(

M2
Pl

2
R�1

2
r��r���1

2
r��r���V(�; �))

(1)

Inflaton and curvaton do not interact with each other
The background and perturbed curvaton equation of motion:

���+ 3H _��+ V;� = 0 (2)

� ��k + 3H� _�k +

 
k2

a2 + V;��

!
��k ' 0 (3)

�� is almost frozen during inflation

Gaussian fluctuation: �� � Hinf

2�
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Evolution of Curvature perturbation

Observable curvature perturbation gets generated after inflation

The metric can be written as,

ds2 = �dt2 + a2(1 + �)gijdxidxj

� at large scales can be written as,

_� = � H
�+ P

�Pnad

�Pnad ! Non-adiabatic perturbation
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Amplification process

After inflation we have two components: radiation (rad) and
curvaton (�)

Gauge invariant perturbations : �i = � +
��i

_�i

The total curvature perturbation: � = (1� f )�rad + f ��

f =
3��

3�� + 4�rad

�i’s are conserved seperatly but the total curvature perturbation
evolves as,

_� = _f (�� � �rad) (4)

_f > 0 ) Growth of curvature perturbations

The non-adaibatic pressure: �Pnad / (�� � �rad)
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�N formalism

Motivation: Easier to study the superhorizon evolution of
perturbations. All the informations are encoded in background
evoltuion.

If we follow the volume expansion rate starting from a flat
hypersurface to uniform density hypersurface for any field �
curvature perturbation can be estimated as,

� � @N(�)

@�
��

and the spectrum,

h��i �
�
@N
@�

�2
h����i
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�N: Implications in curvaton

During inflation the N does not depend on �
After inflation if � startes dominating the energy density,

@N
@�

6= 0

We get the amplification of initial curvaton density fluctuations and
can generate observable CMB fluctuations.
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�N : Basic formulas

The powerspectrum:

P� =

�
@N
@�

�2
h����i =

�
Hinf

2�

�2 �@N
@�

�2

The bispectrum:

fNL =
@2N
@�2 =

�
@N
@�

�2

A smaller powerspectrum leads to large non-Gaussianity
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The vanilla curvaton

The Lagrangian:

L = �1
2
(@��)

2 � m2�2

Conisderation: m � Hinf

After H � m, � starts to dominate the energy density it’s energy
density redshifs as, a�3 as opposed to the radiation behavior a�4.

A small decay width of �! dominate the energy density of the
Universe! can generate sufficient perturbation
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Start with energy equation at the time of � decay with � as decay
width:

3M2
p�

2 = �rad;0e�4N + ��;0e�3N

Differentiating w.r.t �

@N
@�

=
2r

4 + 3r
1
��

with, r =
��;decay

�rad;decay

For sufficient curvaton domination, r !1) @N
@�

� 2
3��

For ! 0 ) @N
@�

=
r
2

1
��

Non-Gaussianity: fNL =
5
12

(�3 +
4
r
+

8
4 + 3r

);

For r !1) fNL = �15
12
) constant and negative
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Figure: P� for r !1

The powerspectrum, P� =

�
H
2�

�2 4
9�2

�

Spectral Index: ns � 1 =
2
3

V 00(�)

H2
inf

+
2 _Hinf

Hinf
=

2
3

m2

H2
inf
� �

For m2 � H2
inf , � controls ns
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Axion as curvaton
The system:

L = �1
2
@��@

��� �4
�
1� cos

�
�

f

��

�4 = m2f 2 with f 2 is the decay constant

Analytical estimation:

P� =

�
Hinf

2�

�2 � r
4 + 3r

�2 �1 + cos ��
sin ��

�2
with,

� =
�

f
, [arXiv:2007.01741, T. Kobayashi]

At � ! 0 limit the axion potential behaves like vanilla curvaton
and the powerspectrum follows the same form

Spectral index: ns � 1 =
2
3

m2

H2
inf

cos �� � �; [arXiv:2007.01741, T. Kobayashi]

Axion curvaton can generate the correct amplitude of the
powerspectrum and spectral tilt without �
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Numerical analysis

Any potential beyond quadratic (m2�2) needs to be analyzed
numerically. Reason: Analytical computation assumes energy of
the curvaton redshifts as a�3 irrespective of the potential’s nature

We need to numerically solve (post-inflation):

dN
dx

=

"
�e�4N +

1
3M2

P

(
1
2

�
d�
dx

�2
+ V(�)

)# 1
2

d2�

dx2 = �3
dN
dx

d�
dx
� dV(�)

d�

(5)

[arXiv: 0902.2619; P. Chingangbam, Q. Huang]

x = mt; The integration has to be done from x = 1 (H = m) to
x =

m
�

(H = �)

r !1 corresponds to x > 1012
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Methodology

Solve the axion equation of motion during inflation even if the
axion evolution is neglible
The coupled equation in post-inflationary evolution is hard to
handle; after certain x the code does not behave well

We solve the coupled equation upto some x = x1 where the code
behaves well) This is not r !1 limit
After this x1 we assume the curvaton potential behaves like
quadratic one and hence its energy density evolves as a�3

We solve
dN
dx

=
�
�e�4N

+ ��;x1 e�3N�1=2

from x1 to xdecay =
m
�
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Vanilla

Pure cosine
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[arXiv: 2302.00668; A. Ghoshal, A.N.]
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The parameters of the theory: Hinf ; �; f ;�; ��

x = 104; Hinf = 10�5; � = 30Hinf ; f = 2500Hinf
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The parameters of the theory: Hinf ; �; f ;�; ��
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Varying Hinf ; �; f ;� would shift the normalisation of
powerspectrum along the �i axis

As the powerspectrum is coninciding the CMB normalisation at
two different �i it is possible to find a suitable parameter space
where both amplitude and ns satisfy observation only from axion
contribution
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Summary of first part

Curvaton mechanism can explain observed CMB fluctuations

The spectral index can be attributed to inflation in most cases but
axion curvaton can explain ns itself

Analytical estimation is not possible beyond vanilla curvaton
(quadratic potential) scenario
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Non-Canonical axion curvaton

The system:

S =

Z
d4x
p�g

"
M2

Pl
2

R� 1
2
r��r��� 1

2
�2(�)r��r��� V(�; �)

#

The Friedmann Equations and Equation of motion of the fields:

3M2
PlH

2 =

"
1
2
_��2 +

�2(��)

2
_��2 + V(��; ��)

#
; (6)

���+ 3H _��+ V;� = ��;� _��2 ; (7)

���+

�
3H + 2

�;�
�

_��

�
_��+

V;�

�2 = 0 ; (8)

_��! 0 ensures � does not backreact inflationary dynamics.
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Fluctuations

Fluctuation equation of motion

� ��k +

 
3 + 2

�;�
�

_�

H

!
H� _�k +

 
k2

a2 +
V;��

�2

!
��k ' 0

Assuming �;� does not affect �� the spectrum is,

P��(k) � k3

2�2 j��kj2 '
�

Hinf

2��(�)

�2
�����
k=aH

: (9)

A small �(�) is responsible for the enhancement in � spectrum
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The Non-Canonical term
The Non-Canonical term we consider has a gaussian-dip

�(�) = �c

(
1� A exp

"
�(�� �dip)

2

2��

#)
; (10)
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Figure: Left:� = 0:1; Right: �ini=MPl = 5:5, �dip=MPl = 4:8, A = 0:995,

�eff = 2
�;�
�

_�

H2 ! A friction term
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Methodology

During inflation solve the coupled equation of inflaton and
curvaton background and perturbation equations

Sort out h����i produced during inflation

Apply �N formalism to study post inflationary evolution
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numerics

Eq. (2.15)

δϕ(te,k)/(Hinf/2π)2

10-4 10-2 100 102 104
10-4

10-2

100

102

104

106

k/kdip


δ
χ
(t
e
,k
)/
H

in
f

2
π
2

�0(�) non-trivially affect the fluctuations! Larger amplification
and two dips before and after the growth; A ! 0:995; �� = 0:001
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Effect of A and � on the powerspectrum
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Larger A ! Larger amplitude

Larger � ! amplification for more modes but less amplification
as �0 is small
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PBH Abundance
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Figure: f�dip=MPl = 4:8; �� = 0:01g (the blue curve);
f�dip=MPl = 4:5; �� = 0:01g (the black curve);
f�dip=MPl = 5:0; �� = 0:01g (the purple curve);
f�dip=MPl = 4:8; �� = 0:1g (the green curve)
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Summary

An axion coupled kinetically with inflaton can lead to large
amplification of the curvature perturbation

We studied a coupling �(�) that has a Gaussian dip

The quantity �0(�) is non-trivially responsible for the
enhancement of the perturbations as the dip

By tuning our parameters we can explain production of PBH in
different mass range
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PBH Mechanism

Density contrast:

��

�
= �4(1 + !)

5 + 3!

�
1

aH

�2
e�5�=2r2e�=2 ; (11)

Non-linear density contrast is related to linear density contrast

�nl = �l � 3
8
�2

l ; (12)

PDF: P(�l) =
1p

2��l
exp

�
��2

l =(2�
2
l )
�

;

�2
l =

1
(2�)3

16
81

Z
d ln kW(kR)2

�
k

aH

�4
P�(k)

Mass fraction:

�(M) = 2
Z
1

�c

P(�nl)d�nl : (13)

Abhishek Naskar


