PBH formation from Non-Canonical Axion-Curvaton Scenario

Abhishek Naskar

IIT Madras

Growth of curvature perturbations for PBH formation \& detectable GWs in non-minimal curvaton scenario revisited,
C. Chen, A. Ghoshal, Z. Lalak, Y. Luo, A. Naskar
2305.12325 (JCAP 08 (2023) 041)

December 3, 2023

Contents

(1) Basics of Curvaton Scenario
(2) Axion as Curvaton
(3) Non-minimal coupling and PBH

Motivation for Curvaton

- An alternative method to generate adiabatic curvature perturbation where inflaton is not responsible for it [arXiv:hep-ph/0110002]
- Curvaton does not require any assumptions about the nature of inflation
- Curvaton can save some models that are ruled out by data [arXiv:1312.1353]
- Possibility of producing large non-Gaussianities

The Curvaton Picture

- The curvaton field is subdominant in energy during inflation
- Curvaton field is almost forzen during inflation
- Curvaton does not affect the background inflationary evolution
- After inflation the curvaton starts to dominate the energy density and produce observed curvature perturbation

Curvaton dynamics

- Background curvaton: $\bar{\chi}$; curvaton perturbation: $\delta \chi$
- The system

$$
\begin{equation*}
S=\int d^{4} x \sqrt{-g}\left(\frac{M_{\mathrm{Pl}}^{2}}{2} R-\frac{1}{2} \nabla_{\mu} \phi \nabla^{\mu} \phi-\frac{1}{2} \nabla_{\mu} \chi \nabla^{\mu} \chi-V(\phi, \chi)\right) \tag{1}
\end{equation*}
$$

Inflaton and curvaton do not interact with each other

- The background and perturbed curvaton equation of motion:

$$
\begin{align*}
\ddot{\bar{\chi}}+3 H \dot{\bar{\chi}}+V_{, \chi} & =0 \tag{2}\\
\delta \ddot{\chi}_{k}+3 H \delta \dot{\chi}_{k}+\left(\frac{k^{2}}{a^{2}}+V_{, \chi \chi}\right) \delta \chi_{k} & \simeq 0 \tag{3}
\end{align*}
$$

- $\bar{\chi}$ is almost frozen during inflation
- Gaussian fluctuation: $\delta \chi \sim \frac{H_{\text {inf }}}{2 \pi}$

Evolution of Curvature perturbation

Observable curvature perturbation gets generated after inflation

- The metric can be written as,

$$
d s^{2}=-d t^{2}+a^{2}(1+\zeta) g^{i j} d x_{i} d x_{j}
$$

- ζ at large scales can be written as,

$$
\dot{\zeta}=-\frac{H}{\rho+P} \delta P_{n a d}
$$

$\delta P_{\text {nad }} \rightarrow$ Non-adiabatic perturbation

Amplification process

- After inflation we have two components: radiation (rad) and curvaton (χ)
- Gauge invariant perturbations : $\zeta_{i}=-\psi+\frac{\delta \rho_{i}}{\dot{\rho}_{i}}$
- The total curvature perturbation: $\zeta=(1-f) \zeta_{r a d}+f \zeta_{\chi}$

$$
f=\frac{3 \rho_{\chi}}{3 \rho_{\chi}+4 \rho_{\text {rad }}}
$$

- ζ_{i} 's are conserved seperatly but the total curvature perturbation evolves as,

$$
\begin{equation*}
\dot{\zeta}=\dot{f}\left(\zeta_{\chi}-\zeta_{\text {rad }}\right) \tag{4}
\end{equation*}
$$

- $\dot{f}>0 \Rightarrow$ Growth of curvature perturbations
- The non-adaibatic pressure: $\delta P_{\text {nad }} \propto\left(\zeta_{\chi}-\zeta_{\text {rad }}\right)$

δN formalism

- Motivation: Easier to study the superhorizon evolution of perturbations. All the informations are encoded in background evoltuion.
- If we follow the volume expansion rate starting from a flat hypersurface to uniform density hypersurface for any field ϕ curvature perturbation can be estimated as,

$$
\zeta \sim \frac{\partial N(\phi)}{\partial \phi} \delta \phi
$$

and the spectrum,

$$
\langle\zeta \zeta\rangle \sim\left(\frac{\partial N}{\partial \phi}\right)^{2}\langle\delta \phi \delta \phi\rangle
$$

During inflation the N does not depend on χ
After inflation if χ startes dominating the energy density,

$$
\frac{\partial N}{\partial \chi} \neq 0
$$

We get the amplification of initial curvaton density fluctuations and can generate observable CMB fluctuations.

$\delta N:$ Basic formulas

The powerspectrum:

$$
P_{\zeta}=\left(\frac{\partial N}{\partial \phi}\right)^{2}\langle\delta \phi \delta \phi\rangle=\left(\frac{H_{\text {inf }}}{2 \pi}\right)^{2}\left(\frac{\partial N}{\partial \phi}\right)^{2}
$$

The bispectrum:

$$
f_{N L}=\frac{\partial^{2} N}{\partial \phi^{2}} /\left(\frac{\partial N}{\partial \phi}\right)^{2}
$$

A smaller powerspectrum leads to large non-Gaussianity

The Lagrangian:

$$
\mathcal{L}=-\frac{1}{2}\left(\partial_{\mu} \chi\right)^{2}-m^{2} \chi^{2}
$$

- Conisderation: $m \ll H_{\text {inf }}$
- After $H \sim m, \chi$ starts to dominate the energy density it's energy density redshifs as, a^{-3} as opposed to the radiation behavior a^{-4}.
- A small decay width of $\chi \rightarrow$ dominate the energy density of the Universe \rightarrow can generate sufficient perturbation

Start with energy equation at the time of χ decay with Γ as decay width:

$$
3 M_{p}^{2} \Gamma^{2}=\rho_{r a d, 0} e^{-4 N}+\rho_{\chi, 0} e^{-3 N}
$$

Differentiating w.r.t χ

$$
\frac{\partial N}{\partial \chi}=\frac{2 r}{4+3 r} \frac{1}{\chi_{*}}
$$

with, $r=\frac{\rho_{\chi, \text { decay }}}{\rho_{\text {rad,decay }}}$

- For sufficient curvaton domination, $r \rightarrow \infty \Rightarrow \frac{\partial N}{\partial \chi} \sim \frac{2}{3 \chi_{*}}$
- For $\rightarrow 0 \Rightarrow \frac{\partial N}{\partial \chi}=\frac{r}{2} \frac{1}{\chi_{*}}$
- Non-Gaussianity: $f_{N L}=\frac{5}{12}\left(-3+\frac{4}{r}+\frac{8}{4+3 r}\right)$;

For $r \rightarrow \infty \Rightarrow f_{N L}=-\frac{15}{12} \Rightarrow$ constant and negative

Figure: P_{ζ} for $r \rightarrow \infty$

- The powerspectrum, $P_{\zeta}=\left(\frac{H}{2 \pi}\right)^{2} \frac{4}{9 \chi_{*}^{2}}$
- Spectral Index: $n_{s}-1=\frac{2}{3} \frac{V^{\prime \prime}(\phi)}{H_{i n f}^{2}}+\frac{2 \dot{H_{\mathrm{inf}}}}{H_{i n f}}=\frac{2}{3} \frac{m^{2}}{H_{i n f}^{2}}-\epsilon$

For $m^{2} \ll H_{i n f}^{2}, \epsilon$ controls n_{s}

Axion as curvaton

The system:

$$
\mathcal{L}=-\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi-\Lambda^{4}\left[1-\cos \left(\frac{\phi}{f}\right)\right]
$$

$\Lambda^{4}=m^{2} f^{2}$ with f^{2} is the decay constant

- Analytical estimation:

$$
\begin{aligned}
& P_{\zeta}=\left(\frac{H_{\text {inf }}}{2 \pi}\right)^{2}\left(\frac{r}{4+3 r}\right)^{2}\left(\frac{1+\cos \theta_{*}}{\sin \theta_{*}}\right)^{2} \text { with, } \\
& \theta=\frac{\phi}{f}, \quad \text { [arXiv:2007.01741, т. Kobayashi] }
\end{aligned}
$$

- At $\theta \rightarrow 0$ limit the axion potential behaves like vanilla curvaton and the powerspectrum follows the same form
- Spectral index: $n_{s}-1=\frac{2}{3} \frac{m^{2}}{H_{i n f}^{2}} \cos \theta_{*}-\epsilon ; \quad$ [arXiv:2007.01741, T. Kobayashi]
- Axion curvaton can generate the correct amplitude of the powerspectrum and spectral tilt without ϵ

Numerical analysis

- Any potential beyond quadratic $\left(m^{2} \phi^{2}\right)$ needs to be analyzed numerically. Reason: Analytical computation assumes energy of the curvaton redshifts as a^{-3} irrespective of the potential's nature
- We need to numerically solve (post-inflation):

$$
\begin{align*}
& \frac{d N}{d x}=\left[\alpha e^{-4 N}+\frac{1}{3 M_{P}^{2}}\left\{\frac{1}{2}\left(\frac{d \phi}{d x}\right)^{2}+V(\phi)\right\}\right]^{\frac{1}{2}} \tag{5}\\
& \frac{d^{2} \phi}{d x^{2}}=-3 \frac{d N}{d x} \frac{d \phi}{d x}-\frac{d V(\phi)}{d \phi}
\end{align*}
$$

[arXiv: 0902.2619; P. Chingangbam, Q. Huang]

- $x=m t$; The integration has to be done from $x=1(H=m)$ to
$x=\frac{m}{\Gamma}(H=\Gamma)$
- $r \rightarrow \infty$ corresponds to $x>10^{12}$

Methodology

- Solve the axion equation of motion during inflation even if the axion evolution is neglible
- The coupled equation in post-inflationary evolution is hard to handle; after certain x the code does not behave well
- We solve the coupled equation upto some $x=x_{1}$ where the code behaves well \Rightarrow This is not $r \rightarrow \infty$ limit
- After this x_{1} we assume the curvaton potential behaves like quadratic one and hence its energy density evolves as a^{-3}
- We solve

$$
\frac{d N}{d x}=\left[\alpha e^{-4 N}+\rho_{\theta, x_{1}} e^{-3 N}\right]^{1 / 2}
$$

from x_{1} to $x_{\text {decay }}=\frac{m}{\Gamma}$

[arXiv: 2302.00668; A. Ghoshal, A.N.]

The parameters of the theory: $H_{i n f}, \Lambda, f, \Gamma, \phi_{*}$

$$
x=10^{4}, H_{i n f}=10^{-5}, \Lambda=30 H_{i n f}, f=2500 H_{i n f}
$$

The parameters of the theory: $H_{i n f}, \Lambda, f, \Gamma, \phi_{*}$

- Varying $H_{\text {inf }}, \Lambda, f, \Gamma$ would shift the normalisation of powerspectrum along the θ_{i} axis
- As the powerspectrum is coninciding the CMB normalisation at two different θ_{i} it is possible to find a suitable parameter space where both amplitude and n_{s} satisfy observation only from axion contribution

Summary of first part

- Curvaton mechanism can explain observed CMB fluctuations
- The spectral index can be attributed to inflation in most cases but axion curvaton can explain n_{s} itself
- Analytical estimation is not possible beyond vanilla curvaton (quadratic potential) scenario

The system:

$$
S=\int \mathrm{d}^{4} x \sqrt{-g}\left[\frac{M_{\mathrm{Pl}}^{2}}{2} R-\frac{1}{2} \nabla_{\mu} \phi \nabla^{\mu} \phi-\frac{1}{2} \lambda^{2}(\phi) \nabla_{\mu} \chi \nabla^{\mu} \chi-V(\phi, \chi)\right]
$$

The Friedmann Equations and Equation of motion of the fields:

$$
\begin{align*}
& 3 M_{\mathrm{Pl}}^{2} H^{2}=\left[\frac{1}{2} \dot{\bar{\phi}}^{2}+\frac{\lambda^{2}(\bar{\phi})}{2} \dot{\bar{\chi}}^{2}+V(\bar{\phi}, \bar{\chi})\right] \tag{6}\\
& \ddot{\bar{\phi}}+3 H \dot{\bar{\phi}}+V_{, \phi}=\lambda \lambda_{, \phi} \dot{\bar{\chi}}^{2} \tag{7}\\
& \ddot{\bar{\chi}}+\left(3 H+2 \frac{\lambda_{, \phi}}{\lambda} \dot{\bar{\phi}}\right) \dot{\bar{\chi}}+\frac{V_{, \chi}}{\lambda^{2}}=0 \tag{8}
\end{align*}
$$

$\dot{\bar{\chi}} \rightarrow 0$ ensures χ does not backreact inflationary dynamics.

Fluctuation equation of motion

$$
\delta \ddot{\chi}_{k}+\left(3+2 \frac{\lambda, \phi}{\lambda} \frac{\dot{\phi}}{H}\right) H \delta \dot{\chi}_{k}+\left(\frac{k^{2}}{a^{2}}+\frac{V_{, \chi \chi}}{\lambda^{2}}\right) \delta \chi_{k} \simeq 0
$$

Assuming $\lambda,_{\phi}$ does not affect $\delta \chi$ the spectrum is,

$$
\begin{equation*}
\left.\mathcal{P}_{\delta \chi}(k) \equiv \frac{k^{3}}{2 \pi^{2}}\left|\delta \chi_{k}\right|^{2} \simeq\left(\frac{H_{\mathrm{inf}}}{2 \pi \lambda(\phi)}\right)^{2}\right|_{k=a H} \tag{9}
\end{equation*}
$$

A small $\lambda(\phi)$ is responsible for the enhancement in χ spectrum

The Non-Canonical term

The Non-Canonical term we consider has a gaussian-dip

$$
\begin{equation*}
\lambda(\phi)=\lambda_{c}\left\{1-A \exp \left[-\frac{\left(\phi-\phi_{\mathrm{dip}}\right)^{2}}{2 \sigma_{\lambda}}\right]\right\}, \tag{10}
\end{equation*}
$$

Figure: Left: $\sigma=0.1 ;$ Right: $\phi_{\mathrm{ini}} / M_{\mathrm{Pl}}=5.5, \phi_{\mathrm{dip}} / M_{\mathrm{Pl}}=4.8, A=0.995$, $\eta_{\text {eff }}=2 \frac{\lambda_{,},}{\lambda} \frac{\dot{\phi}}{H^{2}} \rightarrow$ A friction term

Methodology

- During inflation solve the coupled equation of inflaton and curvaton background and perturbation equations
- Sort out $\langle\delta \chi \delta \chi\rangle$ produced during inflation
- Apply δN formalism to study post inflationary evolution

$\lambda^{\prime}(\phi)$ non-trivially affect the fluctuations \rightarrow Larger amplification and two dips before and after the growth; $A \rightarrow 0.995, \sigma_{\lambda}=0.001$

Effect of A and σ on the powerspectrum

- Larger $A \rightarrow$ Larger amplitude
- Larger $\sigma \rightarrow$ amplification for more modes but less amplification as λ^{\prime} is small

Figure: $\left\{\phi_{\text {dip }} / M_{\mathrm{Pl}}=4.8, \sigma_{\lambda}=0.01\right\}$ (the blue curve);
$\left\{\phi_{\text {dip }} / M_{\mathrm{Pl}}=4.5, \sigma_{\lambda}=0.01\right\}$ (the black curve);
$\left\{\phi_{\text {dip }} / M_{\mathrm{PI}}=5.0, \sigma_{\lambda}=0.01\right\}$ (the purple curve);
$\left\{\phi_{\text {dip }} / M_{\mathrm{Pl}}=4.8, \sigma_{\lambda}=0.1\right\}$ (the green curve)

- An axion coupled kinetically with inflaton can lead to large amplification of the curvature perturbation
- We studied a coupling $\lambda(\phi)$ that has a Gaussian dip
- The quantity $\lambda^{\prime}(\phi)$ is non-trivially responsible for the enhancement of the perturbations as the dip
- By tuning our parameters we can explain production of PBH in different mass range
- Density contrast:

$$
\begin{equation*}
\frac{\delta \rho}{\rho}=-\frac{4(1+\omega)}{5+3 \omega}\left(\frac{1}{a H}\right)^{2} e^{-5 \zeta / 2} \nabla^{2} e^{\zeta / 2} \tag{11}
\end{equation*}
$$

- Non-linear density contrast is related to linear density contrast

$$
\begin{equation*}
\delta_{\mathrm{nl}}=\delta_{l}-\frac{3}{8} \delta_{l}^{2} \tag{12}
\end{equation*}
$$

- PDF: $P\left(\delta_{l}\right)=\frac{1}{\sqrt{2 \pi} \sigma_{l}} \exp \left(-\delta_{l}^{2} /\left(2 \sigma_{l}^{2}\right)\right)$;

$$
\sigma_{l}^{2}=\frac{1}{(2 \pi)^{3}} \frac{16}{81} \int \mathrm{~d} \ln k W(k R)^{2}\left(\frac{k}{a H}\right)^{4} \mathcal{P}_{\zeta}(k)
$$

- Mass fraction:

$$
\begin{equation*}
\beta(M)=2 \int_{\delta_{c}}^{\infty} P\left(\delta_{\mathrm{nl}}\right) \mathrm{d} \delta_{\mathrm{nl}} \tag{13}
\end{equation*}
$$

