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@ Basics of Curvaton Scenario
@ Axion as Curvaton

© Non-minimal coupling and PBH
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Motivation for Curvaton

@ An alternative method to generate adiabatic curvature
perturbation where inflaton is not responsible for it
[arXiv:hep-ph/0110002]

e Curvaton does not require any assumptions about the nature of
inflation

@ Curvaton can save some models that are ruled out by data
[arXiv:1312.1353]

@ Possibility of producing large non-Gaussianities
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The Curvaton Picture

@ The curvaton field is subdominant in energy during inflation
@ Curvaton field is almost forzen during inflation
@ Curvaton does not affect the background inflationary evolution

o After inflation the curvaton starts to dominate the energy density
and produce observed curvature perturbation
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Curvaton dynamics

@ Background curvaton: ¥; curvaton perturbation: dx

@ The system

M3 1 1
S = [dxy/ =RV - VX T V($,X))
ey
Inflaton and curvaton do not interact with each other
@ The background and perturbed curvaton equation of motion:
X+3HX+V,=0 2)
. . K2
Oxr + 3Hdox, + <az + V,XX> dxr ~0 3)
@ Y is almost frozen during inflation
H,
@ Gaussian fluctuation: §x ~ %
T
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Evolution of Curvature perturbation

Observable curvature perturbation gets generated after inflation

@ The metric can be written as,
ds* = —di* + a*(1 + {)g¥dxidx;

@ ( at large scales can be written as,

; H
(= _mépnad

0P,.q — Non-adiabatic perturbation
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Amplification process

o After inflation we have two components: radiation (rad) and
curvaton (x)
50
@ Gauge invariant perturbations : {; = —¢ + ﬁ
i
@ The total curvature perturbation: { = (1 — f){raa + f{x
3p
f=x
3px + 4prad
@ (;’s are conserved seperatly but the total curvature perturbation
evolves as,

¢ :f(fx - Cmd) 4
e f > 0 = Growth of curvature perturbations

@ The non-adaibatic pressure: 6 Ppuq & ((y — (raa)
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ON formalism

@ Motivation: Easier to study the superhorizon evolution of
perturbations. All the informations are encoded in background
evoltuion.

o If we follow the volume expansion rate starting from a flat
hypersurface to uniform density hypersurface for any field ¢
curvature perturbation can be estimated as,

¢~ 2B sy
and the spectrum,
6 2
€0~ () (6059)
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ON: Implications in curvaton

During inflation the N does not depend on x
After inflation if )y startes dominating the energy density,

ON

dx
We get the amplification of initial curvaton density fluctuations and
can generate observable CMB fluctuations.
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ON : Basic formulas

The powerspectrum:

e (5 - (52 ()

The bispectrum:

=5 (3)

A smaller powerspectrum leads to large non-Gaussianity
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The vanilla curvaton

The Lagrangian:

1
L= —5(3;0()2 - ’"2X2

@ Conisderation: m < Hiyr

o After H ~ m, x starts to dominate the energy density it’s energy

density redshifs as, a—> as opposed to the radiation behavior a~*.

@ A small decay width of x — dominate the energy density of the
Universe — can generate sufficient perturbation
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Start with energy equation at the time of x decay with I' as decay

width:

3M§F2 = pragoe” " + py e

Differentiating w.r.t

ON  2r 1
Ox 44 3rx.
with, = Poodecay.
Prad,decay
ON
e For sufficient curvaton domination, » — 0o = a
ON r 1
e For—-0=—=-—
X 2Xx
@ Non-Gaussianity: f; 5(3—1—4—1- 8 )
ussiani = - ;
¥ INL = 1%2 r  4+43r
Forr — 0o = fy, = I = constant and negative
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H\? 4
@ The powerspectrum, P =

2m) 9x2
2v" 2Hine 2 m?
@ Spectral Index: ny — 1 = = g¢) mf _ 2 n12 p
3 Hinf Hiyp 3Hinf

For m*> < Hl-znf, € controls ng
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Axion as curvaton

The system:

1
L=-3 L $O P — A {1 — cos (;’)]
A* = m?f? with f? is the decay constant
@ Analytical estimation:
Hinf>2 < r >2 (1 + cos€*>2 ,
Py = th,
¢ ( o ) \4+3r sing, )
0= ¢ i i
— [arXiv:2007.01741, T. Kobayashi]

f

@ At @ — 0 limit the axion potential behaves like vanilla curvaton

and the powerspectrum follows the same form
2
4 Spectral index: ng — 1= *TCOS 9* — €, [arXiv:2007.01741, T. Kobayashi]
3H, inf
@ Axion curvaton can generate the correct amplitude of the
powerspectrum and spectral tilt without e
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Numerical analysis

@ Any potential beyond quadratic (m*¢*) needs to be analyzed
numerically. Reason: Analytical computation assumes energy of
the curvaton redshifts as a > irrespective of the potential’s nature

@ We need to numerically solve (post-inflation):

dN | 1 (1 /dg\? :
o s B el

¢ __dNdp _dv(g)

dx? dx dx d¢
[arXiv: 0902.2619; P. Chingangbam, Q. Huang]

@ x = mt; The integration has to be done from x = 1 (H = m) to

x=T (H=T)

@ r — 0o corresponds to x > 10
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Methodology

@ Solve the axion equation of motion during inflation even if the
axion evolution is neglible

@ The coupled equation in post-inflationary evolution is hard to
handle; after certain x the code does not behave well
e We solve the coupled equation upto some x = x; where the code
behaves well = This is not » — oo limit
o After this x; we assume the curvaton potential behaves like
quadratic one and hence its energy density evolves as a >

o We solve AN
_4, _3 1/2
- = lae M+ pg e
m
from X1 0 Xgecqy = T
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The parameters of the theory: H;,r, A, f,T, ¢y

x=10*%, Hyp = 1075, A = 30H,,s, f = 2500H,,s
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The parameters of the theory: Hy,r, A, f,T, ¢y

Ta/m = 107", Hipr = 10" Mp, A = 30 Higg, f; = 2500 Higg

To/m =107, Hipe = 107> Mp, A = 30 Hiy, fo = 2500 Hig

1x107

5x107 4l

1x1077)

a7 5x107

11078 A
5 o e
5x10 - - _4

@ Varying Hj,r, A, f,T" would shift the normalisation of
powerspectrum along the 8; axis
@ As the powerspectrum is coninciding the CMB normalisation at

two different §; it is possible to find a suitable parameter space
where both amplitude and n; satisfy observation only from axion

contribution




Summary of first part

@ Curvaton mechanism can explain observed CMB fluctuations

@ The spectral index can be attributed to inflation in most cases but
axion curvaton can explain n; itself

@ Analytical estimation is not possible beyond vanilla curvaton
(quadratic potential) scenario
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Non-Canonical axion curvaton

The system:

S = / d*x/—g

PIR - fv#¢v#¢ — %Az(qﬁ)vyxv“x - V(¢ x)]

The Friedmann Equations and Equation of motion of the fields:

. 2( 1
WEH = | F + 4 g‘p) X+ V(d_),)'c)] , (6)
S+3HP+Vy =M%, 7
2 Mos\ o Vix _
x+(3H+2}\¢>x+ =0, (8)

x — 0 ensures x does not backreact inflationary dynamics.
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Fluctuations

Fluctuation equation of motion

. Ao ¢ . v
6Xk+<3+2)’\¢H>H6Xk+<az+ )’\>§X>6Xk:0

Assuming A, 4 does not affect §x the spectrum is,

k3 Hin 2
Poy (k) = ﬁwmz ~ (27r)\(f¢)) ‘ . )
k=aH

A small A(¢) is responsible for the enhancement in x spectrum
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The Non-Canonical term

The Non-Canonical term we consider has a gaussian-dip

(¢ - ¢dip)2

A(P) = Ac {1 — Aexp [_M]} , (10)
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Figure: Left:o = 0.1; Right: ¢ini/Mp = 5.5, daip/Mp = 4.8, A = 0.995,

A
N = 2 )’\¢ % — A friction term
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Methodology

e During inflation solve the coupled equation of inflaton and
curvaton background and perturbation equations

@ Sort out (§xdx) produced during inflation
@ Apply dN formalism to study post inflationary evolution
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100k — numerics
Eq. (2.15)

104+

Pag(to, K (Hinil270)?

i)
2m

102

Poxte )/ (52

100 w M A
1072} .
10—4 1 1 1 1

104 102 10° 10% 104
k/kgip

X (¢) non-trivially affect the fluctuations— Larger amplification
and two dips before and after the growth; A — 0.995, ) = 0.001
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Effect of A and o on the powerspectrum

1001 A4 10°F a |
— 0.995 — 0.01
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o Larger A — Larger amplitude

o Larger ¢ — amplification for more modes but less amplification
as X' is small
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PBH Abundance
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Figure: {@qip/Mp1 = 4.8, 05 = 0.01} (the blue curve);

{¢daip/Mp1 = 4.5,05 = 0.01} (the black curve);

{¢dgip/Mp1 = 5.0,05 = 0.01} (the purple curve);

{bdaip/Mp1 = 4.8,05 = 0.1} (the green curve)
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@ An axion coupled kinetically with inflaton can lead to large
amplification of the curvature perturbation

e We studied a coupling A(¢) that has a Gaussian dip
e The quantity A’'(¢) is non-trivially responsible for the
enhancement of the perturbations as the dip

@ By tuning our parameters we can explain production of PBH in
different mass range
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PBH Mechanism

@ Density contrast:
2
op — Al +w) <1> e /272002 (11)
p 543w \aH
@ Non-linear density contrast is related to linear density contrast

3
Onl = 6 — gdf , 12)

e PDF: P(6)) = \ﬁl lexp (—5,2/(20,2));

1 k\*
2 “1 P
7= (2m)3 81 /dl KW(R)* (aH> ()

@ Mass fraction:

pOn) =2 [ P(3u)dén. (13)
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