GRAVITATIONAL WAVES IN NEUTRINO PLASMA AND NANOGRAV SIGNAL

DEPARTMENT OF PHYSICS AND ASTROPHYSICS, UNIVERSITY OF DELHI, INDIA

JUNE 5, 2021

Arun Kumar Pandey

IIT-Madras

REFERENCES

This talk is based on two works

Arun Kumar Pandey, P. K. Natwariya, J. R. Bhatt, Magnetic fields in a hot dense neutrino plasma and the Gravitational Waves, Phys. Rev. D 101, 023531 (2020) <u>10.1103/PhysRevD.101.023531</u>

Arun Kumar Pandey

Gravitational waves in neutrino plasma and NANOGrav signal EPJC (2021) <u>10.1140/epjc/s10052-021-09190-w</u> arXiv: 2011.05821 (astro-ph.co)

CONTENT

- Origin of cosmic magnetic fields
- Gravitational waves due to magnetic fields
- Discussions
- New ideas

Gravitational waves

- Predicted by Einstein's General Theory of Relativity
- ✤ A ripple in the fabric of space time.

Credit: NASA Goddard Space Flight Center

Arun Kumar Pandey

Gravitational waves

NANOGrav: North American Nanohertz Observatory for Gravitational Waves

- * Einstein tensor $G_{\mu\nu} := R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R = \frac{8\pi G}{c^4}T_{\mu\nu}$ * Energy momentum tensor
- Here $G_{\mu\nu}$ and $R_{\mu\nu}$ are function of metric $g_{\mu\nu}$
- Metric perturbations due to small fluctuations in the matter part can be given as

- * Einstein tensor $G_{\mu\nu} := R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R = \frac{8\pi G}{c^4}T_{\mu\nu}$ * Energy momentum tensor
- Here $G_{\mu\nu}$ and $R_{\mu\nu}$ are function of metric $g_{\mu\nu}$
- Metric perturbations due to small fluctuations in the matter part can be given as

 $(|h_{\mu\nu}| \ll 1)$

we need to find the

source

GRAVITATIONAL WAVES

* Using Einstein's field equation and the perturbed metric, we can write linear field equation for $h_{\mu\nu}$ in compact form (in terms of redefined variable $\bar{h}_{\mu\nu}$) as

 $\Box \bar{h}_{\mu\nu} = -\frac{16\pi G}{c^4} T_{\mu\nu}$

• Here $\bar{h}_{\mu\nu} = h_{\mu\nu} + \frac{1}{2}g_{\mu\nu}\bar{h}$ and using gauge condition $\partial_{\mu}\bar{h}^{\mu\nu} = 0$

Amplitude

In vacuum,

$$\left(-\frac{\partial^2}{\partial t^2} + \nabla^2\right)h_{\mu\nu} = 0$$

* Linear wave solution, $h^{\mu\nu} = A^{\mu\nu} \exp(ik_{\alpha}x^{\alpha})$.

Components=10, (as it is symmetric tensor of rank 2) Using TT-gauge conditions: $\partial_{\mu}\bar{h}^{\mu\nu} = 0$, $h_i^i = 0 = h^{0\mu}$, the number of independent components reduce to 2, which is represented by h_+ and h_{\times} . Propagation vector Gives the propagation direction

 Solution, when we have source, can be written in terms of Green's function as above equation is linear in

$$\bar{h}_{\mu\nu} = -\frac{16\pi G}{c^4} \int d^4x' G(x - x') T_{\mu\nu}(x')$$

∗ Here *G*(*x* − *x'*) is the Green's function and is a solution of
□_{*x*} *G*(*x* − *x'*) = δ⁴(*x* − *x'*).

So we need to find $T_{\mu\nu}$

When sourced by a magnetic fields,

$$T_{ij}(\mathbf{k}) = \frac{1}{2(2\pi)^4 a^2} \int d^3q \left[B_i(\mathbf{q}) B_j^*(\mathbf{q} - \mathbf{k}) - \frac{1}{2} B_l(\mathbf{q}) B_l^*(\mathbf{q} - \mathbf{k}) \delta_{ij} \right]$$

Question is from where does these magnetic fields come?

Arun Kumar Pandey

Gravitational waves

Magnetic fields in early universe

The magnetised universe

Arun Kumar Pandey

OBSERVATIONAL BOUNDS

Observational upper bound

<u>CMB</u>: B < 5 nG at 1 Mpc scale (PLANCK results 2015: XIX)

 Observational lower bound High energy gamma rays: B > 10⁻¹⁶G (Neronov&Vovk 2010, Taylor et al 2011, Takahashi et al 2011....)

Big question of origin?

Still unsettled

Arun Kumar Pandey

Gravitational waves

ORIGIN OF MAGNETIC FIELD

- Astrophysical Origin
- Primordial Origin

ORIGIN OF MAGNETIC FIELD

Primordial mechanism:

- * <u>Inflation</u>: breaking of conformal invariance of electromagnetic interaction during inflation $B \sim 10^{-65} 10^{-9} G$ (Turner et al. PRD 37, 2743, 1983, Ratra 1992)
- * <u>Phase transition</u>: First order phase transitions in the early universe producing bubbles of new phase inside the old one $B \sim 10^{-29} 10^{-20} G_{(Hogan 1983, Sigel et al. 1997)}$
- * Recombination: rotating plasma blobs interacting with background radiation
 - $B \sim 10^{-20} G$ [Ramesh Narayan, Naoz, 2001]
- * Asymmetries in the early universe

Post Recombination mechanism:

* <u>Biermann Battery mechanism</u> $B \sim 10^{-21} G$ at length scale of few pc

$$\frac{\partial \overrightarrow{B}}{\partial t} = \alpha \frac{\overrightarrow{\nabla} n_e \times \overrightarrow{\nabla} p_e}{n_e^2}$$

Arun Kumar Pandey

Gravitational waves

DYNAMICS OF MAGNETIC FIELDS

* The evolution of magnetic fields is controlled by induction equation:

Arun Kumar Pandey

Gravitational waves

Magnetic fields in a hot dense neutrino plasma

NEUTRINOS IN HOT DENSE PLASMA MEDIUM

- Neutrinos behave differently in a dense matter than in vacuum.
- The lepton-neutrino interaction is given by the effective current-current Lagrangian [Dvornikova & Semikoz 2014]

$$\mathscr{L}_{\rm eff} = -\sqrt{2}G_F \sum_{\rho=\nu_e,\nu_\tau,\nu_\mu} j_{\nu}^{\rho} j_{l_{\rho}} \qquad (G_F \text{ is the Fermi const})$$

- * where $j_{l_{\rho}} = \bar{\psi}\gamma_{\rho} (a_{L}^{(a)}P_{L} + a_{R}^{(\alpha)}P_{R})\bar{\psi}$ and $j_{\nu_{\alpha}}^{\rho} = \bar{\nu}_{\alpha}\gamma^{\rho}(1 \gamma^{5})\nu_{\alpha}$ (here γ^{μ} is the Dirac matrices and $\gamma^{5} = i\gamma^{0}\gamma^{1}\gamma^{2}\gamma^{3}$).
- * Summation run over all neutrino species. The coefficients $a_{L,R}$ is related to Weinberg angle.
- * The average over the neutrino ensemble of the neutrino current is $\langle \bar{\nu}_{\alpha} \gamma^{\rho} (1 \gamma^5) \nu_{\alpha} \rangle \approx n_{\nu_{\alpha}} n_{\bar{\nu}_{\alpha}} = \Delta n_{\nu_{\alpha}}$
- * Net charge for leptons are given $j_{l_L}^0 j_{l_R}^0 = \sqrt{2} G_F (\Delta n_{\nu_e} \Delta n_{\nu_{\mu}} \Delta n_{\nu_{\tau}})$

Arun Kumar Pandey

Gravitational waves

EFFECTIVE LAGRANGIAN

The two tree-level Feynman diagrams for the elastic scattering process $\bar{\nu}_e + e^- \rightarrow \bar{\nu}_e + e^-$

- * Using Fierz transformation, this can be rearranged as $\mathscr{L}_{\text{eff}}(\bar{\nu}_e + e^- \to \bar{\nu}_e + e^-) = -\frac{G_F}{\sqrt{2}} \left\{ \underbrace{\left[\bar{\nu}_e \gamma^{\rho} (1 - \gamma^5) \nu_e \right]}_{\text{neutral current contribution}} \underbrace{\left[\bar{e} \gamma_{\rho} ((1 + g_V^l) - (1 + g_A^l) \gamma^5) e \right]}_{\text{neutral current contribution}} \right\}$

Arun Kumar Pandey

Gravitational waves

EFFECTIVE LAGRANGIAN

The two tree-level Feynman diagrams for the elastic scattering process (a). $\bar{\nu}_{\mu,\tau} + e^- \rightarrow \bar{\nu}_{\mu,\tau} + e^-$, (b). Tree-level Feynman diagram for the charged-current $\bar{\nu}_{\mu} + e^- \rightarrow \bar{\nu}_e + \mu^-$

* Lagrangian for the process, given above, in a compact form as $(\alpha = \mu, \tau)$

$$\mathscr{L}_{\rm eff}(\bar{\nu}_{\alpha} + e^{-} \to \bar{\nu}_{\alpha} + e^{-}) = -\frac{G_{F}}{\sqrt{2}} \left\{ \underbrace{[\bar{\nu}_{\alpha}\gamma^{\rho}(1 - \gamma^{5})\nu_{\alpha}][\bar{e}\gamma_{\rho}(g_{V}^{l} - g_{A}^{l}\gamma^{5})e]}_{\text{neutral current contribution}} \right\}$$

- * In the case of $\nu \bar{\nu}$ gas embedded in leptons, the current which is written in terms of polarisation tenor is written as $j_{\mu} = \prod_{\mu\nu} A^{\nu}$ (here A^{μ} is any gauge fields).
- * Here $\Pi_{\mu\nu}(k) = (-g_{\mu\nu} + \frac{k_{\mu}k_{\nu}}{k^2})\Pi_T + \frac{k_{\mu}k_{\nu}}{k^2}\Pi_L + i\varepsilon_{\mu\nu\alpha\beta}k^{\alpha}(f_L^{\beta} f_R^{\beta})\Pi_P$ (where $f_{L,R}^{\beta}$ represents the external neutrino macroscopic currents in νl interacting gas under the mean field approximation via the external neutrino macroscopic currents) Arun Kumar Pandey Gravitational waves Delhi University

MAGNETIC FIELD GENERATION

In the case of the present scenario, it has been shown that, the lepton current has following set of terms [pandey et al. 2020].

$$\vec{j} = \sigma(\vec{E} + \vec{v} \times \vec{B}) + \Sigma_2 \vec{B} + \Sigma_\omega \vec{\omega}$$

- * Here the transport coefficients Σ_2 and Σ_{ω} depends on the asymmetries in the number densities of the various neutrino species and temperature.
- Using Maxwell's equation and current expression given above

$$\frac{\partial \overrightarrow{B}}{\partial \tau} = \frac{1}{\sigma} \nabla^2 \overrightarrow{B} + \nabla \times (\overrightarrow{v} \times \overrightarrow{B}) + \frac{\Sigma_2}{\sigma} \nabla \times \overrightarrow{B} + \frac{\Sigma_\omega}{\sigma} \nabla \times \overrightarrow{\omega}$$

 In the absence of any external magnetic fields, first three terms on the right hand side will vanish

MAGNETIC FIELD GENERATION

 In the case of the present scenario, it has been shown that, the lepton current has following set of terms [pandey et al. 2020].

$$\vec{j} = \sigma(\vec{E} + \vec{v} \times \vec{B}) + \Sigma_2 \vec{B} + \Sigma_\omega \vec{\omega}$$

- * Here the transport coefficients Σ_2 and Σ_{ω} depends on the asymmetries in the number densities of the various neutrino species and temperature.
- Using Maxwell's equation and current expression given above

$$\frac{\partial \overrightarrow{B}}{\partial \tau} = \frac{1}{\sigma} \nabla^2 \overrightarrow{B} + \nabla \times (\overrightarrow{v} \times \overrightarrow{B}) + \frac{\Sigma_2}{\sigma} \nabla \times \overrightarrow{B} + \frac{\Sigma_{\omega}}{\sigma} \nabla \times \overrightarrow{\omega}$$

 In the absence of any external magnetic fields, first three terms on the right hand side will vanish

$$\frac{\partial \overrightarrow{B}}{\partial \tau} = \frac{\Sigma_{\omega}}{\sigma} \nabla \times \overrightarrow{\omega}$$

Arun Kumar Pandey

MAGNETIC FIELD GENERATION

Arun Kumar Pandey

Gravitational waves

Origin of the Gravitational waves

* The transverse-traceless part of the stress-energy tensor can be obtained by taking projection of energy momentum tensor by $\mathcal{P}_{iljm}(\mathbf{k})$: $\Pi_{ij}(\mathbf{k}) = \mathcal{P}_{iljm}(\mathbf{k}) T_{lm}(k)$. Here

$$T_{ij}(\mathbf{k}) = \frac{a^{-2}}{2(2\pi)^4} \int d^3q \left[B_i(\mathbf{q}) \mathbf{B}_j^*(\mathbf{q} - \mathbf{k}) - \frac{1}{2} \mathbf{B}_l(\mathbf{q}) \mathbf{B}_l^*(\mathbf{q} - \mathbf{k}) \delta_{ij} \right]$$

Stress tensor power spectrum:

$$\langle \Pi_{ab}(\mathbf{k})\Pi_{cd}^{*}(\mathbf{k}')\rangle = \frac{1}{4a^{4}} [\mathcal{M}_{abcd}f(k) + i\mathcal{A}_{abcd}g(k)]\delta(\mathbf{k} - \mathbf{k}'),$$

here

$$\begin{split} f(k) &= \frac{1}{4} \frac{1}{(4\pi)^2} \int d^3 p \left[(1+\gamma^2)(1+\beta^2) \, S(p) S(k-p) + 4 \, \gamma \, \beta \, \mathcal{H}(p) \mathcal{H}(k-p) \right] \\ g(k) &= \frac{1}{2} \frac{1}{(4\pi)^2} \int d^3 p \, \left[(1+\gamma^2) \, \beta \, S(p) \, \mathcal{H}(k-p) \right]. \end{split}$$

We consider flat FLRW metric and the tensor perturbation

$$ds^{2} = a^{2}(\eta)[-d\eta^{2} + (\delta_{ij} + 2h_{ij})dx^{i} dx^{j}],$$

* In this gauge, these tensor perturbations describe the GW whose evolution equation can be obtained by solving Einstein's equation which, to the linear order in h_{ij} , is given as:

$$h_{ij}'' + 2 H h_{ij}' + k^2 h_{ij} = 16 \pi G a^2 \Pi_{ij},$$

where prime denotes the derivative with respect to the conformal time η and $H = \frac{1}{a(\eta)} \frac{\partial a(\eta)}{\partial \eta}$.

* The energy density of the gravitational wave is given as

$$\frac{d S_{GW}(k)}{d \log k} = \frac{k^3}{2 M_*^4 a^2 (2\pi)^6 G} (|h'_+|^2 + |h'_\times|^2).$$

- Here h'_+ and h'_{\times} are $h'_{+,\times}(x) = -\frac{90}{\pi^2 g_{\text{eff}}} \sqrt{\frac{f \mp g}{3}} j'_0(x) \log(x_{in})$
- Using these, we can write the power spectrum at the time of generation:

$$\frac{d\Omega_{GW,s}}{d\log k} = \frac{1}{(\rho_{c,s}/M_*^4)} \frac{dS_{GW,s}}{d\log k} = \frac{16\pi k^3}{3(2\pi)^6 a_s^2} \left(\frac{90}{\pi^2 g_{\text{eff}}}\right)^2 \frac{f(k)}{H_s^2} \left[j_0'(x)\log(x_{in})\right]^2.$$

Once gravitational waves are produced, they are decoupled from rest of the Universe. This implies that the energy density of the gravitational waves will fall as a⁻⁴ and frequency red shifts as a⁻¹. Hence, the power spectrum at today's epoch can be given as

$$\frac{d\Omega_{S_{GW,0}}}{d\log k} \equiv \frac{d\Omega_{S_{GW,s}}}{d\log k} \left(\frac{a_s}{a_0}\right)^4 \left(\frac{\rho_{c,s}}{\rho_{c,0}}\right)$$

* Assuming that the Universe has expanded adiabatically which implies that the entropy per comoving volume is conserved ($a^3s = constant$). Hence

$$\frac{a_s}{a_0} = \left(\frac{g_{\text{eff},0}}{g_{\text{eff},s}}\right)^{1/3} \left(\frac{T_0}{T_s}\right)$$

where we have used g_{eff} for the effective degrees of freedom that contributes to the entropy density also.

* Therefore, spectrum of the GW for the present time is

$$\frac{d\Omega_{S_{GW,0}}}{d\log k} = \frac{16\pi k^3}{3(2\pi)^6 a_s^2} \times \left(\frac{90}{\pi^2 g_{\text{eff}}}\right)^2 \left(\frac{g_{\text{eff},0}}{g_{\text{eff},s}}\right)^{4/3} \left(\frac{T_0}{T_s}\right)^4 \frac{f(k)}{H_0^2} \left[j_0'(x)\log(x_{in})\right]^2$$

Arun Kumar Pandey

Favoured strength of the magnetic fields:

To explain the NANOGrav signal, strength of the magnetic fields calculated is $B_0 \sim 10^{-12}$ G at a frequency of $f \sim 10^{-8}$ Hz and a length scale of 1 Mpc.

Arun Kumar Pandey

Gravitational waves

Thank You

