
Quantum evolution of cosmological
perturbations: single and two field
inflation

Krishna Mohan Parattu

IIT Madras, Chennai, India
August 27, 2022

Based on Ravindran, Parattu, Sriramkumar, GRG (2022), arxiv:2206.05760



Introduction

How did the universe originate?
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Introduction

Where did all these galaxies come
from?
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Introduction

Where did all the galaxies come from?

The Creation of the Milky Way (Cherokee)
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Introduction

Largest structures in the universe

SDSS map of the universe
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Introduction

How did it all begin?
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Introduction

Structure from vacuum fluctuations of the
inflaton?

Proposed soon after introduction of inflation:
• Hawking (1982)
• Starobinsky (1982)
• Guth and Pi (1982)
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Introduction

Structure from vacuum fluctuations of the
inflaton?

Some agreement between this assumption and observations.
Starting with inflaton in its ground state:

• Fluctuations at the end of inflation follow a Gaussian
distribution

• Fluctuations are nearly scale-invariant
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Introduction

Vacuum fluctuations become fluctuations in
the universe

• Variation in values of inflation at various points- various
points inflate differently⇒ Different densities
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Introduction

Two questions

• Why don’t astronomers need quantum methods to make
sense of observations of the universe? Why does the
universe appear largely classical?

• Are there any features in the structure in the universe that
will prove that it originated as quantum fluctuations?
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Formalism

Formalism
The mathematics of cosmological perturbations
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Formalism

The Action: Einstein’s gravity and a scalar
field

• Single field inflation:

A =
1
2

∫
d4x

√−g
[

1
2

R − 1
2

gµν∂µϕ∂νϕ− V (ϕ)

]
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Formalism

Background metric and perturbed metric

• Background FRW metric, spatially flat:

ds2 = −dt2 + a2(t) δij dx i dx j = a2(η)
(
−dη2 + δij dx i dx j

)
,

• Perturbations:

1)δϕ 2)δgηη 3)δgηi 5)δgij ,

11 degrees of freedom.
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Formalism

Degrees of Freedom

• After removing all redundant degrees of freedom,

1 physical scalar mode, no vector modes, 2 tensor modes

• 1 scalar degrees of freedom- represented by a
conveniently normalized gauge-invariant variable:
Mukhanov-Sasaki Variable vM
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Formalism

The Mukhanov-Sasaki Variable

• Second-order action for the variable in conformal time:

1
2

∫
dη
∫

d3x

[
v ′2

MS − (∂ivMS)
2 − 2z ′

z
v ′

MS vMS +

(
z ′

z

)2

v2
MS

]
,

with z = (aϕ̇)/H.

• Upto a total derivative, a scalar field in Minkowski with a
time-dependent mass.
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Formalism

Quantization

• Corresponding momentum

pMS = v ′
MS −

z ′

z
vMS .

• Promote to operators and postulate

[v̂MS(x , η), p̂MS(y , η)] = iδ(3)(x − y);
[v̂MS(x , η), v̂MS(y , η)] = [p̂MS(x , η), p̂MS(y , η)] = 0 .
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Formalism

The Fourier modes

• Fourier decomposition in the flat 3-space:

vMS(η,x) =
∫

d3k
(2π)3/2 vk (η) ei k ·x .

• Reality of vMS:

v−k (η) = v∗
k (η) .
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Formalism

The Fourier modes

• Action, restricting to independent modes using v−k (η) = v∗
k (η):

∫
dη
∫

R3
2

d3k v ′
k v

′

−k −
(

k2 − z ′2

z2

)
v∗
−k vk − z ′

z

(
v ′

k v−k + v
′

−k vk

)

• The Fourier modes evolve independently at linear order.
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Formalism

Hermitian variables

• Real and imaginary parts:

vR
k ≡ 1√

2
(vk + v∗

k ) ; v I
k ≡ 1

i
√

2
(vk − v∗

k )

• Action:

1
2

∫
R/2

dη d3k
[
vR

k
′2 − 2z ′

z
vR

k vR
k
′ −
(

k2 − z ′2

z2

)
vR

k
2

+ v I
k
′2 − 2z ′

z
v I

k v I
k
′ −
(

k2 − z ′2

z2

)
v I

k
2
]
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Formalism

Hermitian variables

• The real and imaginary parts evolve independently and
identically.

• Conjugate momenta:

pR
k = vR

k
′ − z ′

z
vR

k , pI
k = v I

k
′ − z ′

z
v I

k

• Now on, (v̂k , p̂k ) stands for either of these pairs
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Formalism

Evolution

• Classical Hamiltonian:

H =

∫
R/2

dη d3k

(
p2

k
2

+
z ′

z
pk vk +

k2

2
v2

k

)

• Quantum Hamiltonian:

Ĥ =

∫
R/2

dη d3k

(
p̂2

k
2

+
z ′

2z
( p̂k v̂k + v̂k p̂k ) +

k2

2
v̂2

k

)
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Formalism

Schrodinger equation

• Schrodinger equation:

i
∂Ψ

∂η
= −1

2
∂2Ψ

∂v2 − i
2

z ′

z

(
Ψ+ 2 v

∂Ψ

∂v

)
+

k2

2
v2 Ψ .

• Solution through the Gaussian ansatz:

Ψ(v , η) = N (η) exp

[
−Ω(η) v2

2

]
,

• Bunch-Davies initial conditions
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Formalism

Quadratic correlation functions

• The covariance matrix:

V =

[
⟨ˆ̃v2⟩ 1

2 ⟨ˆ̃v ˆ̃p + ˆ̃p ˆ̃v⟩
1
2 ⟨ˆ̃v ˆ̃p + ˆ̃p ˆ̃v⟩ ⟨ˆ̃p2⟩

]
.

• Define Z T = (ṽ , p̃)

Z T V−1 Z
2

= 1 .
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Formalism

Error ellipse
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Formalism

Quadratic correlation functions

• We obtain

⟨v̂k v̂k ′⟩ = 1
2 k

[cosh (2 r) + sinh (2 r) cos (2ϕ)] δ(3)(k − k ′),

⟨p̂k p̂k ′⟩ = k
2

[cosh (2 r)− sinh (2 r) cos (2ϕ)] δ(3)(k − k ′) .

⟨v̂k p̂k ′ + p̂k ′ v̂k ⟩
2

=
1
2
[sinh (2 r) sin (2ϕ)] δ(3)(k − k ′)

• Compare

[v̂k , p̂k ] = iδ(3)(k − k ′)
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Quantum and classical nature of cosmological perturbations

Quantum and classical nature of
cosmological perturbations
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Quantum and classical nature of cosmological perturbations

Where is the quantum?

Many papers written on how these quantum perturbations
became classical with the evolution of the universe:

• The large scale structure appears to be classical
• Astronomers are not known to use quantum techniques to

analyze their data
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Quantum and classical nature of cosmological perturbations

1980’s and 1990’s: How did these quantum
perturbations become classical?

Many papers written on how these quantum perturbations
became classical with the evolution of the universe:

• Guth and Pi (1985)
• Albrecht et al. (1994)
• Polarski, Starobinsky (1996). Polarski, Starobinsky, Kiefer

etc.(1995-2010).
• A good review: Kiefer, Polarski- Why do cosmological

perturbations look classical to us? (2009)
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Quantum and classical nature of cosmological perturbations

Two things to note

1. No absolute single criterion of classicality!
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Quantum and classical nature of cosmological perturbations

Two things to note

2. We compare the system of cosmological perturbations with a
classical distribution, not a classical particle state.
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Quantum and classical nature of cosmological perturbations

Two main mechanisms

1. Squeezing
2. Decoherence
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Quantum and classical nature of cosmological perturbations

Squeezing

• Now see the Hamiltonian

Ĥk =
p̂2

k
2

+
z ′

2z
( p̂k v̂k + v̂k p̂k ) +

k2

2
v̂2

k
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Quantum and classical nature of cosmological perturbations

Squeezing and classicality

For example,

⟨v̂k p̂k ′ + p̂k ′ v̂k ⟩
2

=
1
2
[sinh (2 r) sin (2ϕ)] δ(3)(k − k ′)

Compare

[v̂k , p̂k ] = iδ(3)(k − k ′)
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Quantum and classical nature of cosmological perturbations

Squeezing and classicality

Table from Martin, Vennin (2016):
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Quantum and classical nature of cosmological perturbations

Decoherence

Due to interaction with other fields in the universe, coherence
(superpositions) are lost
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Quantum and classical nature of cosmological perturbations

Decoherence

• Mathematically, the reduced density matrix of the system,
after tracing out the environment, gets diagonalized.

• Measured by the entanglement entropy

S = −Tr(ρr ln ρr )
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Quantum and classical nature of cosmological perturbations

Single-field power law models
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Quantum and classical nature of cosmological perturbations

Ultra slow-roll models

• There were some indications in the literature that the
discussion of classicality would be different in models with
an ultra slow-roll (USR) phase.

• Usual claim: quantum nature is hard to probe because of
information lost in the decaying mode. But this decaying
mode grows in USR case!

• de Putter, Dore (2019): the usual decaying mode grows,
but then the other mode gets highly suppressed in the late
universe. Thus, effectively the same conclusion. High
squeezing, but they worked without squeezing parameters.
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Quantum and classical nature of cosmological perturbations

Ultra slow-roll model:

V (ϕ) = V0

{
tanh

(
ϕ√

6 MPl

)
+ A sin

[
1
fϕ

tanh

(
ϕ√

6 MPl

)]}2

.

• V0 = 2 × 10−10 M4
Pl
, A = 0.130383 and fϕ = 0.129576.

• The point of inflection in the potential: ϕ0 = 1.05 MPl .
• Initial value of the field: ϕi = 6.1 MPl , ϵ1i = 10−4.
• 66 e-folds of inflation
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Quantum and classical nature of cosmological perturbations

Ultra slow-roll models: squeezing amplitude r
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Quantum and classical nature of cosmological perturbations

Ultra slow-roll models: Power spectrum
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Quantum and classical nature of cosmological perturbations

Two-field models

• Provide a richer dynamics than single-field models.

• In models where isocurvature perturbations decay, natural to
consider them as an environment to integrate out and consider
entanglement entropy and quantum discord of the subsystem of
the remaining curvature perturbations.
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Quantum and classical nature of cosmological perturbations

Two-field models
• Action:

S[ϕ, χ] =

∫
d4x

√−g
[
−1

2
∂µϕ∂µϕ− e2 b(ϕ)

2
∂µχ∂µχ− V (ϕ, χ)

]
.

• Our choice:

V (ϕ, χ) =
m2

2
(ϕ2 + χ2) ,

b(ϕ) =
b1

2

{
1 + tanh [α (ϕ− ϕ0)]

}
.
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Quantum and classical nature of cosmological perturbations

Case 1: Slow roll scenario

• b1 = 0 ⇒ Two uncoupled, canonical scalar fields.

• m = 9 × 10−6 MPl .

• Initial values: ϕi = χi = 11.5 MPl and ϕ̇i = χ̇i = −3.68 × 10−6 M2
Pl
.

• Inflation lasts for about 66 e-folds

• Essentially two fields evolving identically, ϕ− χ = 0
⇒ Effectively single-field evolution.
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Quantum and classical nature of cosmological perturbations

Case 2: PBH scenario

• b1 = 15, α = 10 M−1
Pl

and ϕ0 = 6 MPl

• m = 1.03 × 10−5 MPl .

• Initial values: (ϕi, χi) = (13 MPl ,6 MPl) and
(ϕ̇i, χ̇i) = (−5.44 × 10−6 M2

Pl
,0).

• Inflation lasts for about 66 e-folds

• One can see a sharp turn in the trajectory in field space.
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Quantum and classical nature of cosmological perturbations

Case 2: PBH scenario
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Quantum and classical nature of cosmological perturbations

Perturbations

• Action for real or imaginary parts of any Fourier component
of the MS variables:

S =
1
2

∫
dη
(

v ′2
σ + v ′2

s − 2
z ′

z
v ′
σ vσ − 2

a′

a
v ′

s vs

− 2 ξ v ′
σ vs + 2 ξ

z ′

z
vσ vs − m2

σ v2
σ − m2

s v2
s

)
.

• ξ controls the interaction between vσ and vs.
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Quantum and classical nature of cosmological perturbations

Perturbations
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1
2
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(

v ′2
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s − 2
z ′

z
v ′
σ vσ − 2

a′

a
v ′

s vs

− 2 ξ v ′
σ vs + 2 ξ

z ′

z
vσ vs − m2

σ v2
σ − m2

s v2
s
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Quantum and classical nature of cosmological perturbations

Interaction
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N
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Quantum and classical nature of cosmological perturbations

Schrodinger equation

• Schrodinger equation solved through the Gaussian ansatz:

Ψ(vσ, vs, η) ∝ exp
[
−1

2
Ωσσ(η) v2

σ − 1
2
Ωss(η) v2

s − Ωσs(η) vσ vs

]

• Bunch-Davies initial conditions for both vσ and vs at early times
when they are decoupled.
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Quantum and classical nature of cosmological perturbations

Quadratic correlation functions

• We obtain

⟨v̂2
σ⟩ =

(2 Nσ + 1)
2 k

[cosh (2 rσ) + sinh (2 rσ) cos (2ϕσ)] ,

⟨p̂2
σ⟩ =

(2 Nσ + 1)k
2

[cosh (2 rσ)− sinh (2 rσ) cos (2ϕσ)] .

⟨v̂σ p̂σ + p̂σ v̂σ⟩
2

=
(2 Nσ + 1)

2
[sinh (2 rσ) sin (2ϕσ)]
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Quantum and classical nature of cosmological perturbations

Squeezing parameter

35 40 45 50 55 60
N

0

5

10

15

20

r σ
(N

)

k = 1010 Mpc−1

k = 1014 Mpc−1

k = 1016 Mpc−1

50/63 Quantum in the sky



Quantum and classical nature of cosmological perturbations

Entanglement entropy and decoherence
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Quantum and classical nature of cosmological perturbations

Power spectrum of the curvature perturbation
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Quantum and classical nature of cosmological perturbations

2000s: can we prove that cosmic structure is
quantum?

Classical mechanisms for cosmic structure:
• A. Berera and L.-Z. Fang, Phys. Rev. Lett. 74, 1912 (1995)
• A. Berera, Phys. Rev. Lett. 75, 3218 (1995).
• D. Lopez Nacir, R. A. Porto, L. Senatore, and M.

Zaldarriaga, JHEP 01, 075 (2012).
• L. Senatore, E. Silverstein, and M. Zaldarriaga, JCAP 08,

016 (2014).
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Quantum and classical nature of cosmological perturbations

2000s: can we prove that cosmic structure is
quantum?

• Bell inequalities: A quintessential quantum property
• Explored in Campo, Parentani (2005, 2006): concluded

that they can indeed be violated if decoherence is not too
large, but very difficult to verify observationally

• Maldacena (2015): A rather complicated model that can
produce observable Bell violation
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Quantum and classical nature of cosmological perturbations

Bell inequality violation

• Especially Martin, Vennin and collaborators (2016-2022):
violated in Fourier space. But real-space violation is more
physical. In real space, Bell inequality violation for certain
operators considering two spatially separated patches
does not occur because of decoherence due to interaction
with other patches.

• Other type of operators may be studied for Bell inequality
violation.

• There are various other Bell-type inequalities
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Quantum and classical nature of cosmological perturbations

Quantum discord

• Quantum discord: a quantum property, correlations
between different parts of a system, that is more general
than entanglement. Used in cosmology by Lim (2015).

• Martin and Vennin (2015): A more extensive analysis to
show that this quantity is indeed very large at the end of
inflation, placing the perturbations in a very quantum state.
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Quantum and classical nature of cosmological perturbations

Quantum discord

• Quantum discord between k and −k modes in single-field
case: cosh2 r log cosh2 r − sinh2 r log sinh2 r

• Large squeezing leading to classicality
⇒ Large quantum discord giving large quantumness!
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Quantum and classical nature of cosmological perturbations

Quantum discord for two-field models

• For two-field models: a natural division of the system into
curvature and isocurvature modes.

• From quantum information literature: when a pure state is
divided into two, quantum discord = entanglement entropy.

• We verified this explicitly for a general Gaussian
wavefunction.
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Quantum and classical nature of cosmological perturbations

Quantum discord for two-field models

• While quantum discord is a recent topic in cosmology,
entanglement entropy has been around for much longer.

• Entanglement entropy in the case of two-field models has
been discussed before: Prokopec, Rigopoulos (2007);
Battarra, Lehners (2014)
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Quantum and classical nature of cosmological perturbations

Quantum discord for two-field models

• Thus, I have already shown you plots of discord.
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Quantum and classical nature of cosmological perturbations

Thank you!
Questions welcome...
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